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Abstract: To overcome the limitations of traditional mineral processing and recovery methods, cutting-edge 

technologies, including Machine learning (ML), emerge as a paradigm shift in this sector, offering predictive 

insights, data analysis, and real-time monitoring capabilities. The emergence of ML algorithms, such as 

Artificial Neural Networks (ANN), Support Vector Machines, and others, trigger this paradigm. This review 
explores real-world examples and case studies to unveil the transformative potential of ML in mineral 

processing and recovery (exploration, mining, production). This attempt unveils that ML algorithms are 

extensively utilized in enhanced ore sorting and classification, predictive modeling, real-time process control 

and fault diagnosis, and automated mineral identification. Among these applications, predictive modeling 

for process optimization and enhanced ore sorting and classification stand out, with ANN being the most 

frequently employed algorithm. While challenges persist, such as limited data availability, non-normally 

distributed and non-linear data, and varying data dimensions and rates, the advantages of employing ML 

algorithms are undeniable. These advantages include enhanced operational efficiency, waste reduction, 

increased recovery rates, real-time monitoring, cost-effectiveness, time efficiency, and reduced energy 

consumption. This article aims to catalyze further research and promote the widespread adoption of ML for 

more efficient and sustainable mineral processing and recovery practices. 
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Introduction 

Mineral resources, the bedrock of innovation and 
progress, play an indispensable role in shaping 

the modern world. These resources are the 

foundation of numerous industries, providing 

essential raw materials for manufacturing, 

construction, and energy production (McCoy and 
Auret, 2019; Dubinski, 2013). However, the 

journey of minerals from the earth's depths to 

industrial utility has long relied on traditional 

processing and recovery methods. Techniques 

like leaching, flotation, physical separation 

(gravity, magnetic, electrostatic), and 

commination have played critical roles in 

conventional mineral processing and recovery 

methods. These traditional techniques have 

inherent limitations. They can be resource- 

intensive, time-consuming, and subject to 

inefficiencies (McCoy and Auret, 2019). 
However, recently, the landscape of mineral 

processing and recovery has been transformed 

through the integration of computer-aided 

technologies. Software technologies such as 

simulation and modelling software (e.g., DES 

modelling using Arena), employed by Anani et al. 

(2017), have revolutionized the industry. These 

technologies have demonstrated remarkable 
success by enabling rapid and virtual simulations 

of exploration data (Anani et al., 2017). 

Nonetheless, a transformative integration has 

emerged within the mineral processing and 

recovery industries, paving the way for the 
emergence of a superior paradigm: machine 

learning (ML). 

 

As a subset of artificial intelligence (AI), ML 

represents the frontier of transformation in the 

mining industry. Its applications span exploration 

and resource estimation, mine planning and 

design, mineral extraction, ore sorting and 

processing, environmental and health safety, and 

beyond (McCoy and Auret, 2019; Ghorbani et al., 

2016; Anani et al., 2017; Porwel et al., 2003). ML 
algorithms such as Neural networks, support 

vector machines (SVM), random forests (RF), 

and reinforcement learning, among others, are 

being harnessed to optimize mineral recovery 

processes (McCoy and Auret, 2019). Although 

they offer game-changer promises in the field – 

precision, adaptability, resource efficiency, and 

cost reduction, some challenges persist, 

underscoring the dynamic nature of this ever 

evolving field. 
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This review aims to illuminate the transformative 

potential of ML algorithms – how they have been 
and can be used to optimize operations and 

processes. It seeks to inspire further research, 

dialogue, and the widespread implementation of 

ML techniques, fostering more efficient and 

sustainable mineral processing and recovery 

practices. 

 

 

 

Fig. 1 Flowchart of papers review followed by this work. 

 

Fig. 2 Distribution of ML algorithms for mineral recovery and processing (2008 – 2025). 
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Review Methodology 

Extensive literature searches and information 
extraction were conducted to identify relevant 

peer-reviewed publications indexed in major 

scientific research databases, including Google 

Scholar, Science Direct, Scopus, Academia, 

Springer, Pro Quest, Taylor & Francis, Research 

Gate, Wiley, Academia, PubMed, National 

Science Library of Chinese Academy of Sciences, 

Web of Science, Books, Journals, Dissertations, 
E-Books, E-Journals, E-Databases, CNKI, 

EBSCO, etc. The literature search involved 

searching relevant and specified keywords and 

phrases to narrow the search scope, encompassing 

terms such as "machine learning" and " mineral 

recovery and processing." Relevant documents 

were found by searching. Following Wee & 

Banister's (2016) strategy, the snowballing 

strategy involving both forward and backward 

searches was implemented, leading to the 

identification of supplementary papers. The 
outcome of this comprehensive search yielded an 

abundance of journals, conferences, and media 

publications about the application of ML in 

mineral recovery and processing. The search 

focus was narrowed exclusively to peer-reviewed 

journal articles in English, as depicted in Figure 1 

following Dumakor-Dupey and Arya (2021). 

Papers falling within the accepted category 

successfully navigated all decision stages. This 

rigorous process culminated in an exhaustive 

content review of 31 accepted papers between 
2008 to 2025. Figure 2 shows a summary of 

different ML models/algorithms used in mineral 

recovery and processing within the timeline of 

this review. Artificial neural network (ANN) is 

the most commonly used technique, followed by 

SVM. These methods are favored because they 

recognize patterns and model complex systems. 

They can model physical characteristics in 

complex systems without needing extensive 

experiments. 

 

Overview of Machine Learning 

ML is a subset of AI that focuses on the 
development of algorithms and statistical models 

that enable computer systems to learn from and 

make predictions or decisions based on data 

without being explicitly programmed 

(Goodfellow et al., 2016). ML algorithms can be 
categorized into supervised, unsupervised, and 

reinforcement learning, each catering to different 

learning tasks (Goodfellow et al., 2016). 

Supervised learning involves training a model on 

labeled data, where the algorithm learns to predict 

outcomes based on input features. On the other 

hand, unsupervised learning deals with unlabeled 

data, aiming to uncover underlying patterns or 

groupings in the data. Reinforcement learning 

focuses on training models to make sequential 

decisions by rewarding correct decisions and 

penalizing incorrect ones (Goodfellow et al., 

2016). The choice of ML algorithm depends on 

the specific task and dataset in mineral 

processing. Some of the most commonly used 

ML algorithms in mineral processing and 

recovery include SVM, RF, ANN, K-Means 

Clustering, Convolutional Neural Networks, and 

Reinforcement Learning. 

 

ML Approaches in Mineral Recovery and 

Processing 

During mineral recovery and processing stages, 
ML offers its prowess in the following instances. 

 

Predictive Modeling for Process Optimization 

Process optimization in mineral recovery 
involves maximizing efficiency while 

minimizing energy consumption and resource 

waste (Flores and Leiva., 2021). Conventional 

process modeling relies on empirical equations 

and simulations, which often lack accuracy in 

complex mineral processing environments. ML 

models, such as ANN, have risen to prominence 

as essential instruments in domain of predictive 

modelling within mineral processing with 

desirable accuracy (Golmohammadi et al., 2013). 

 
Golmohammadi et al. (2013) harnessed the 

potential of partial least squares and ANN 
algorithms to forecast the precipitation rate within 

the ferric Fe bioleaching process. Similarly, Leiva 

et al. (2017) employed an integration of ANN and 

linear, quadratic, and cubic regression methods to 

model copper recovery within heap leaching. 

Flores and Leiva. (2021) expanded the horizon by 

combining multiple ML algorithms, including 

RF, SVM, and ANN to predict copper recovery in 

heap leaching scenarios. Their findings yielded a 

notable conclusion, highlighting the superiority 

of ANN, particularly in capturing non-linear 

relationships within the studied model. 

 

In another pertinent study, Shoppert et al. (2020) 

employed a multilayer perceptron rooted in ANN 

to uncover the dynamics of leaching conditions in 

fly ash desilication. Their objective was twofold: 
showcasing the potential for heightened SiO2 

extraction from fly ash desilication through 

NaOH leaching while concurrently mitigating 

NaOH loss via solid residue and preserving Al2O3 

in the leaching process. Across the spectrum of 

predictive modelling in mineral leaching 

processes, ML stands as a watershed moment in 

the mineral industry, as illuminated by the studies 

of Flores and Leiva (2021), Golmohammadi et 
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al. (2013), Xie et al. (2016), and Niu and Liu 
(2017). 

 

Enhanced Ore Sorting and Classification 

The traditional ore sorting and classification 
methods rely on physical properties and manual 

sorting, leading to inefficiencies and errors. 

However, the emergence of ML algorithms (e.g., 

SVM and RF) with image processing capabilities 

has played a significant role in the classification 

and sorting of ores. These algorithms measure 

key attributes of ores, including particle size, edge 

characteristics, and reflection properties (McCoy 

and Auret, 2019). 
 

By employing a well-trained classifier and 

identifying the decision boundaries that delineate 

optimal-fit intervals corresponding to sieve-size 

categories, Andersson et al. (2012) successfully 

ascertained the size distribution by weight for 

crushed limestone rocks on conveyor belts with a 

high degree of accuracy. Nonetheless, the 

challenge of dealing with ore particles that are 

only partially visible has posed a significant 

obstacle in the application of this technology. 

However, Thurley and Ng (2008) tackled this 
challenge by employing discriminant analysis to 

distinguish between partially visible and fully 

visible particles. These investigations suggest that 

a reliable estimation of particle size distribution 

can be achieved, provided the product type is 

known. 

 

Real-time Process Control and Fault 

Diagnosis 

Several unplanned downtimes and inefficiencies 

in mineral processing plants result in financial 

losses and suboptimal recovery rates. ML 

algorithms emerged to continuously adapt to 

process parameters to maximize mineral recovery 

while minimizing operational costs and energy 

consumption (van Zijl et al., 2021). Although this 

area of application is growing, only a few 

research articles have employed ML algorithms 

and models in this aspect. However, Khoukhi and 

Khalid (2015) utilized fuzzy logic, ANN, and 
Genetic Algorithms for fault diagnosis. First, they 

applied the three-fault diagnosis scheme. Then, 

hybrids of these techniques are used to enhance 

the precision of fault diagnosis. The study 

concludes that the integration of the three 

approaches allows for gaining critical 

information about fault presence or its absence in 

the shortest possible time. Also, the works of van 

Zijl et al. (2021) in modern mineral processing 

plants utilize fault detection to minimize time 

spent under faulty conditions. 

Tailings Management and Environmental 

Impact Reduction 

Mine tailings pose significant environmental 
risks, requiring efficient monitoring and 

management. However, with the advent of ML 

algorithms, environmental risks are predicted in 

real-time and adequate safety measures are 

employed (Petropoulos et al., 2013). For instance, 

Petropoulos et al. (2013) integrated the SVM 

classifier with multi-temporal change detection of 

Landsat TM imagery to characterize and monitor 
tailing expansion in soil and plants (vegetation) 

with a reported accuracy of over 90%. With real- 

time monitoring and characterization of waste 

expansion rates, ML reduces the ecological 

footprint of mining operations. 

 

Limitations of ML in Mineral Processing 

and Recovery 

Despite the advantages offered by ML 
algorithms, such as their ability to effectively 

capture nonlinearities in the data without 

requiring prior knowledge of the underlying 

processes, several drawbacks exist. One 

prominent concern is the propensity for ANNs to 

over-fit the training data, potentially leading to 

poor generalization performance on unseen data. 

Additionally, the computational complexity 

associated with training large-scale models can 

pose practical challenges, particularly in real-time 

applications. Furthermore, some algorithms, like 

the ANNs, are often regarded as black-box 
models, meaning their internal workings are not 

readily interpretable by end-users. This lack of 

interpretability can hinder trust and 

understanding, limiting their adoption in certain 

contexts (van Zijl et al., 2021). Another limitation 

to ML applications in mineral processing and 

recovery is the domain Expertise and Large 

dataset requirement. Also, ML algorithms may 

require extensive model training and optimization 

to effectively classify properties relevant to 

mineral processing, such as ore size, edges, and 
reflection properties. 

 

Future Research Directions 

Future research should prioritize advancing ML 

applications in mineral recovery by refining 

hybrid models, optimizing automated feature 

selection, enhancing explainable AI (XAI), 

integrating big data, and promoting sustainable 

practices. The development of hybrid models that 

combine Deep Learning and Reinforcement 

Learning with domain-specific knowledge could 

significantly improve predictive accuracy and 

decision-making in mineral processing. 
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Automated feature selection methods require 

further refinement to identify optimal input 

parameters while minimizing model complexity. 

Increasing the interpretability of ML models 

through XAI will be essential to fostering trust 

and facilitating broader industry adoption. 

Additionally, leveraging big data from IoT and 

sensor networks will enhance real-time process 

monitoring, enabling more responsive and 
adaptive mineral recovery operations. Finally, 

future research should explore ML-driven 

approaches for improving sustainability in 

mineral processing, focusing on waste reduction, 

recycling, and energy efficiency to minimize the 

environmental impact of mining activities. 

 

Conclusion 

ML algorithms have emerged as essential tools in 
mineral recovery and processing, offering precise 

control, predictive capabilities, and automation. 

Their adoption leads to increased mineral 

recovery rates, reduced operational costs, and 

minimized potential environmental impact and 

health effects, thus reshaping the mining industry 

to be more sustainable, efficient, and productive. 

This paper reviews recent ML applications in 

mineral processing, focusing on research 

published in select journals from 2008 to 2025. 
According to this article, the most commonly 

used ML algorithms in mineral recovery and 

processing include ANN, SVM, and the 

integration of multiple techniques within the 

timeline considered in the review. These ML 

algorithms find widespread application in various 

types of data, including field, simulated, and 

historical data, enabling researchers and 

practitioners to analyze and optimize mineral 

processing operations effectively. The review 

identifies interesting techniques, challenges, 

complexities, and future opportunities within 
each application category. It also outlines several 

future directions intended to stimulate discussion 

among researchers in the field and guide 

newcomers interested in exploring ML methods 

for their applications. 
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