
Toraman and Şensöğüt /Int.J.Econ.Environ.Geol.Vol. 13(3) 01-10, 2022 

1 

 

c  

Estimation of Calorific Value of Lignite Field in Kütahya-Gürağaç (Turkey) by means of 

Artificial Neural Network  

Sedat Toraman
1
, Cem Şensöğüt

2* 

1 General Directorate of Turkish Coal Enterprises, Ankara, Turkey  
2* Kütahya Dumlupinar University, Mining Engineering Dept., Kütahya, Turkey 

*Email: cem.sensogut@dpu.edu.tr

 ________________________________________________________________________________________  

Abstract: Artificial neural networks are generally information processing systems that mimic the working principles of 

the human brain or central nervous system. Artificial neural networks are a method that gives successful results in solving 

many daily life problems such as classification, modeling and prediction. Artificial neural networks accomplish this by 

adjusting the connection weights between neurons. It can solve prediction and classification problems with back 

propagation algorithm, which is widely used in artificial neural networks with multilayer perceptron. In this study, 

unknown calorific values were tried to be estimated by using the analysis values (depth, ash, moisture, sulfur, calorific 

value) of the drillings realized in the Kütahya -Gürağaç lignite field. An artificial neural network was created for this 

purpose. First, 8 neurons were used in the hidden layer of the network, and 10 neurons were used secondarily. In the 

artificial neural network, the learning function is sigma, the learning rate is 95%, and the network is trained using 

Levenberg-Marquardt as the training algorithm. The network with 10 neurons converged at the desired margin of error 
(1e-07) and was completed after 271 iterations. The relationship between actual calorie values and predicted calorie 

values with network training reached a high ratio of R2=0.97. After the training of the network is completed, the network 

is simulated for the estimation of seams with unknown caloric values. As a result, caloric values were determined with 

an average of 97% confidence interval for the unknown coal seams of the field. 

Keywords: Artificial neural networks, calorific value, coal seam. 

Introduction 

Artificial neural networks (ANN) are information 

processing systems that generally imitate the working 

principles of the human brain or central nervous system 
(Freeman and Skapura, 1991). Studies on this subject 

first started with the modeling of neurons, which are the 

biological units that make up the brain, and their 

application in computer systems. Neurons are 

interconnected by connections, and each connection has 

a numerical weight that expresses the strength, or in 

other words, the importance of its input. Weights are 

the main tool of long-term memory in ANNs. A neural 

network learns by repeatedly adjusting these weights 

(Negnevitsky, 2005). The generalization ability of the 

artificial neural network is directly related to the correct 
selection of the topology of the network. The optimal 

architecture for the network should be large enough to 

learn about the problem and small enough to generalize. 

A network that is smaller than the most suitable 

architecture cannot learn the problem well, on the other 

hand, a larger network over-learns the training data, 

which causes it to memorize and therefore has poor 

generalization ability. There are basically two greedy 

approaches to determining the structure of the network: 

growing/constructive and pruning/destructive. If the 

structure of the network is chosen small and grows 

during the learning process, a growing/constructive 
approach is followed; on the contrary, a 

pruning/destructive approach is followed if it is chosen 

large and shrinks during the learning process (Aran et 

al., 2009). 

Results and Discussion 

Artificial Neural Networks 

Artificial neural networks are generally divided into two 

as single-layer perceptron and multi-layer perceptron. 

Single layer perceptron model 

Single-layer artificial neural networks are used to solve 

linear problems and consist of only input and output 

layers. Layers may have one or more neurons. A simple 

single-layer perceptron model is shown in Figure 1. 

 

Fig. 1 Single layer perceptron model. 

The threshold input prevents the values of the neuron 

elements and the output of the network from being 0 in 

such networks. Its value is always 1. The output of the 

network is obtained by summing the weighted input 
values with the threshold value as shown in Equation 1 

(Arı and Berberler, 2017). 

𝑁𝑜 = 𝑓 (∑ 𝑤𝑖𝑥𝑖 +

𝑛

𝑖=1

⏀) (1) 
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In Equation 1, 𝑥𝑖, 𝑖 = 1,2, …, 𝑛 are the inputs of the 

network, 𝑤𝑖, 𝑖 = 1,2, …, 𝑛 are the corresponding weight 

values, and 𝜙 the threshold value. In a single-layer 

perceptron, the output function is linear. Thus, the 
examples shown to the network are shared between the 

two classes by the threshold function, and the line that 

separates the two classes is tried to be found. The output 

of the network takes a value of 1 or −1. The threshold 

function is shown in Equation 2. 

𝑓(𝑔) = {   1
−1

 
𝑁𝑜 > 0
𝑁𝑜 ≤ 0

} (2) 

The class separator line is defined as in Equation 3. 

𝑤1𝑥1 + 𝑤2𝑥2 + ⏀ = 0 (3) 

From here; 

𝑥1 = −
𝑤2

𝑤1

𝑥2 −
⏀

𝑤1

 (4) 

 

𝑥2 = −
𝑤1

𝑤2

𝑥1 −
⏀

𝑤2

 (5) 

 
 

is obtained as by using Equations 4 and 5, the class 

separator line, whose geometric representation is given 

in Figure 2, can be drawn. 

 
Fig. 2 Geometric representation of the class separator line. 

Weight values are changed with the formula in Equation 
6 at each iteration to determine the class separator line 

to best separate both groups (Arı and Berberler, 2017). 

𝑤𝑖(𝑡 + 1) = 𝑤𝑖(𝑡) + ∆𝑤𝑖(𝑡) (6) 

The threshold value is also updated with the formula in 

Equation 7 at each iteration to shift the class separator 

line between classes. 

⏀(𝑡 + 1) = ⏀(𝑡) + ∆⏀(𝑡) (7) 

There are two main models for single-layer sensors. 

 Perceptron Model 

 Adaline/Madaline Model (Öztemel, 2012). 

a) Perceptron (Simple Sensor) Model 

The perceptron model, developed by psychologist Frank 

Rosenblatt in 1958 to "simulate some of the basic 

properties of intelligent systems", is based on the 

principle that a nerve cell produces an output by 

considering more than one input. The output of the 

network is obtained by comparing the weighted sum of 

the input values with a threshold value. If the total is 

greater than or equal to the threshold, the output value 

is 1, and 0 if it is less. Rosenblatt developed a learning 

rule for sensor training that solves pattern recognition 

problems (Rosenblatt, 1958). He proved that this rule 

will always converge to the correct weights if there are 

weights that solve the problem. Marvin Minsky and 

Seymour Papert have publicly demonstrated that 

sensors can be used in very limited areas and that there 

are too many problem classes that the detector cannot 

solve, in their book "Perceptrons", as a result of their 
deep mathematical investigations on sensors (Minsky 

and Papert, 1969). An example of problems that sensors 

cannot solve is the XOR problem. This limitation of the 

sensors was eliminated with the development of the 

multilayer perceptron model in the 1980s. 

b) Adaline Model 

Bernard Widrow started working on neural networks in 

the late 1950s (Widrow, 1959). In 1960, Widrow and his 

graduate student Marcian Hoff developed a method 

called the Least Mean Square algorithm with the 

ADALINE network. This neuron model, with the clear 

name 'ADAptive LINEar NEuron' or 'ADAptive 
LINEar Element', does not differ much from the 

perceptron structurally. However, ADALINE considers 

the linear function while using the threshold function as 

the sensor activation function. In both models, there can 

be solutions only for linearly separable problems. The 

Least Squares algorithm, also called the Widrow-Hoff 

rule, is more powerful than the perceptron learning 

method. Even if the perceptron learning rule guarantees 

convergence to a solution, it can be noise sensitive due 

to the proximity of the training patterns to the 

borderline. The least squares algorithm tries to keep the 
training patterns as far from the boundary line as 

possible, as it minimizes the mean squared error. 

Widrow and Hoff also developed the MADALINE 

neural network model, which includes multiple adaptive 

elements (Widrow and Hoff, 1960). 

Multi-layer perceptron model 

The failure of single-layer perceptions to solve 

nonlinear problems has led to the development of multi-

layer perceptron (MLP). These sensors consist of an 

input layer, one or more hidden (intermediate) layers, 

and an output layer. They also have transitions between 

layers called forward and backward propagation. In the 

forward propagation step, the output of the network and 

the error value are calculated. During back propagation, 

the interlayer link weight values are updated to 

minimize the calculated error value. The general 

structure of these sensors is shown in Figure 3. The 
back-propagation learning algorithm, which is a 

generalization of the least square’s algorithm in the 

linear perceptron, is used in the MLP model. 

 
Fig. 3 The general structure of MLP. 
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Back Propagation Algorithm 

The back-propagation algorithm consists of the stages 

where the output of the network is determined, the feed 

forward and the weights are updated by back 

propagation to reduce the gradient of the error. In the 

feed forward stage, the inputs of the training set are fed 
to the input layer of the network. The input layer 

contains neurons that accept these inputs. For this 

reason, the number of neurons in the input layer must be 

equal to the number of input values in the data set. The 

neurons in the input layer pass the input values directly 

to the hidden layer. Each neuron in the hidden layer 

calculates the total value by adding the threshold value 

to the weighted input values, and transmits them to the 

output layer by blending them with an activation 

function. The weights between the layers are usually 

randomly chosen at the beginning. After the net input of 

each neuron in the output layer is calculated by adding 
the threshold value to the weighted input values, this 

value is again processed with the activation function to 

determine the output values. 

The error value is found by comparing the output values 

of the network with the expected output values. 

Therefore, the number of neurons to be found in the 

output layer must match the number of outputs in the 

data set. After the 𝒏th training data for the 𝒋th output cell, 

the error is defined as follows, with 𝒅𝒋(𝒏) being the 

expected value; 

𝑒𝑗(𝑛) = 𝑑𝑗(𝑛) − 𝑦𝑗(𝑛) (8) 

The total error in the output layer is expressed by 

Equation 9. 

𝐸 (𝑛) =
1

2
∑ 𝑒𝑗

2(𝑛)
𝑗∈𝐶

 (9) 

The set 𝐶 contains all the neurons in the output layer. 

Here, 𝐸(𝑛) is tried to be minimized with an approach 

similar to the delta rule. The sum of the inputs to the 
output layer cell is expressed by Equation 10. 

𝑣𝑗(𝑛) = ∑ 𝑤𝑗𝑖(𝑛)𝑥𝑖(𝑛)

𝑚

𝑖=0

 (10) 

X = (x1…xn), 𝑗. 𝑚 indicates the input value applied to 

the neuron, 𝑤𝑗 indicates the weight of the 𝑥𝑖 input, and 

𝑓 the activation function. 𝑤𝑗0 denotes the deviation 

element so that 𝑥0 = +1. The result produced by the 

output cells of the network is calculated by the formula 

in Equation 11. 

𝑦𝑖(𝑛) = 𝑓(𝑣𝑗(𝑛)) (11) 

The gradient of the network can be found by 

differentiating the error function according to the 

weights. According to the chain rule, the gradient can be 

expressed as: 

𝜕𝐸(𝑛)

𝜕𝑤𝑗𝑖(𝑛)
=

𝜕𝐸(𝑛)

𝜕𝑒𝑗(𝑛)

𝜕𝑒𝑗(𝑛)

𝜕𝑦𝑗(𝑛)

𝜕𝑦𝑗(𝑛)

𝜕𝑣𝑗(𝑛)

𝜕𝑣𝑗(𝑛)

𝜕𝑤𝑗𝑖(𝑛)
 (12) 

If individual derivatives are taken, 

𝜕𝐸(𝑛)

𝜕𝑤𝑗𝑖(𝑛)
= −𝑒𝑗(𝑛)𝑓(𝑣𝑗(𝑛))𝑥𝑖(𝑛) (13) 

The weight correction amount is applied according to 

the delta rule 𝚫w𝒋𝒊(𝒏). 

∆𝑤𝑗𝑖(𝑛) = −η
𝜕𝐸(𝑛)

𝜕𝑤𝑗𝑖(𝑛)
 (14) 

𝜼 is the learning rate. The − sign in Equation 14 

represents the steep descent in the weight space. Thus, 

the weight correction amount for the back-propagation 

algorithm is expressed as in Equation 15. 

∆𝑤𝑗𝑖(𝑛) = η𝛿𝑗(𝑛)𝑥𝑖(𝑛) (15) 

The local gradient 𝜹𝒋(𝒏) is defined as given in Equation 

16 (Arı and Berberler, 2017). 

𝛿𝑗(𝑛) = 𝑒𝑗(𝑛)𝑓′(𝑣𝑗(𝑛)) (16) 

For any j neurons in the hidden layer, the desired output 

value is not specified, as are the neurons in the output 

layer. For this reason, the error value of a hidden j 

neuron will be affected by the error value of all neurons 

directly connected to that neuron. For any neuron j in 

the hidden layer, the local gradient 𝛿𝑗 (𝑛) is defined as 

in Equation 17 (Arı and Berberler, 2017): 

𝛿𝑗(𝑛) = 𝑓′(𝑣𝑗(𝑛)) ∑ 𝛿𝑗(𝑛)𝑊𝑗𝑖(𝑛)

1

𝑗=0

 (17) 

By adding the momentum term 𝛼 to the weight update 

equation of the back-propagation algorithm by 

Rumelhart et al. (1986), the probability of the mesh 

being stuck at the local minimum is reduced. After 

adding the momentum term, the weight update equation 

became as seen in Equations 18 and 19 (Arı and 

Berberler, 2017): 

𝑤𝑗𝑖(𝑛 + 1) = 𝑤𝑗𝑖(𝑛) + ∆𝑤𝑗𝑖(𝑛) (18) 

 

∆𝑤𝑗𝑖(𝑛) =  η𝛿𝑗(𝑛)𝑥𝑖(𝑛) + 𝛼∆𝑤𝑗𝑖(𝑛) (19) 

The learning methods used to include the training set in 

the calculation in the back-propagation algorithm are 

divided into two groups as single (online) and batch 

training methods. Updating the weights in single 

training is provided by back propagation of the error that 

occurs when each sample in the training dataset is 

applied to the network. In collective training, it is 

possible to update the weights by back propagation of 

the average error obtained after the entire training data 
set is applied to the network. While collective training 

can be parallelized, individual training cannot be 

parallelized (Haykin, 2009). 

Heuristic approaches are used to reduce training times. 

Heuristic approach techniques, which are one of the few 

techniques to speed up convergence and improve the 

performance of the network in the back-propagation 

algorithm, are made using the momentum coefficient. 

The momentum coefficient is a factor that helps the 

ANN recover faster. It is basically based on the principle 

of adding a portion of the previous exchange to the 
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traded exchange. Momentum coefficient not only 

allows the network to exceed local gradients, but also 

helps to reduce the error (Bayındır and Sesveren, 2008). 

The learning rate (𝜼) is a constant that controls and is 

proportional to the speed and accuracy of a learning 
procedure. The learning rate is used to change the 

weights of the ANN. If the learning rate is chosen too 

large, wide jumps occur in the error level, narrow areas 

where learning will take place can be skipped. Also, 

movements across the fault surface become very 

uncontrolled. If it is selected too small, the learning time 

may take a lot of time. Experience shows that the 

learning rate chosen in the range of 0.01≤η≤0.9 gives 

good results. A large learning rate may lead to good 

results initially, but may lead to incorrect results later 

on. Using a smaller learning rate is more time 

consuming, but the result is clearer. Thus, in the learning 
process, the learning rate should be chosen large at the 

beginning and reduced over time (every iteration or 

every few iterations) (Kriesel, 2007). The reduction of 

the learning rate over time is called decay. 

Estimated Calorific Values of Kütahya-Gürağaç 

Lignite Field 

While the ash, moisture and calorie analysis results on 

the cores obtained from the drilling works were 

evaluated in the field coal seam modeling, it was 

determined that there was no calorific value in some 

analysis results. Although calorific values were 
determined by considering different solution methods, 

estimations were tried to be made with a maximum of 

85% R2 values. It was decided to detect unknown 

calorific values by using artificial neural networks in 

order to determine higher R2 values and values closer to 

real calorific values. 

By using the analysis results of ash, moisture and 

calorific values from 587 samples obtained from the 

field in concern, the artificial neural network was 

trained and as a result of the training, the calorific values 

were estimated as a result of 1401 analysis with only 

depth, ash and moisture values, but no calorific values. 

Depth, ash and humidity values used as input variables 

before the mesh was formed were normalized between 

0 and 1 for all values given in Table 1. Again, the 

normalization of the target variable, the calorific values, 

was also carried out. Normalized input and target 

variable matrices are transposed. Input and target 

matrices were formed as [3x587] and [1x587], 

respectively. 

Normalization was performed in the estimation matrix, 

which has 1401 data whose calorific values are 

unknown, and then the matrix of [3x1401] was obtained 
by taking the transpose. As a result of all these 

processes, input data of [3x587], target data of [1x587] 

and prediction data of [3x1401] were prepared. 

Table 1. Values used in Normalization of Data.  

 Depth (m) 
Humidity 

(%) 
Ash (%) 

Real Cal. 

Value 

(Kcal/kg) 

Minimum 35 7,7 2,4 506 

Maximum 185,26 34,5 80,29 5890 

Max.-Min. 150,26 26,8 77,89 5384 

1/(Max.-

Min.) 
0,006655131 0,037313433 0,012838619 0,000185736 

These prepared data sets were fed to the MATLAB 

program to be used in the neural network to be created. 

Training was carried out on MATLAB using 8 neurons 
in the hidden layer and Levenberg-Marquardt algorithm 

as a trainer. 70% of the input and target data with 587 

data were used for training, 15% for validation and 15% 

for testing. 

Network training was performed with the training 

parameters shown in Figure 4 and as a result of the 

training (Figure 5), R=0.982 for training, R= 0.985 for 

validation, and R=0.991 for testing were obtained 

(Figure 6). However, since the regression did not 

converge at the desired value (1e-07), the network was 

re-run by changing the number of neurons. 

 

Figure 4. ANN Training Parameters 

 
 

Fig. 5 ANN Network Training Simulation with 8 Neurons. 
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Fig. 6 Neuron Network Training Outputs. 

The network training study was carried out using 10 

neurons in the hidden layer with the same training 

parameters (Figure 7), and the artificial neural network 

with 10 neurons converged at the determined value (1e-

07), and the training was completed as a result of 271 

iterations. As a result of the training, the relationship 

between training, validation and test data was formed as 
in Figure 8. 

 
Fig. 7 ANN Network Training Simulation with 10 Neurons. 

 

 

 

 
 

Fig. 8 Neuron Network Training Outputs. 

In order to compare the calorific outputs of the neural 

network with 10 neurons with the real calorific outputs, 

inverse normalization was applied to the data output 

from the system. The actual calorific values of 587 
analysis results and the calorific values obtained were 

overlapped (Figure 9). When the registration graph is 

examined, it is seen that the system makes estimations 

very close to the actual calorific values. It was 

determined that there is a very strong relationship such 

as R2=0.97 between the Real Calorific values and the 

Estimated Calorific values. 

 
 

Fig. 9 Comparing Actual Calorific Values with Estimated Calorific 

Values. 

After this stage, simulation was carried out for the 
trained network to produce calorific value in response 

to the analysis results whose calorific values are 

unknown. The calorific values produced by the network 

as a result of the simulation were added to the estimation 

data by inverse normalization. The table created for 

some calorific values was realized as in Table 2. All 
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necessary data set for Kütahya-Gürağaç lignite field 

modeling is ready with the estimated calorific values 

with 97% probability. 

Table 2. Calorific Values Estimation of Some Drilling Points with 

Unknown Calorific Values after Simulation.  

No of 

Drill 

Depth (m) Moisture 

(m) 

Ash (%) Estimated 

Cal. Val. 

(Kcal/kg) 

365 22,75 35,00 26,28 4848 

408 55,00 18,50 47,24 2783 

415 14,40 20,00 24,48 3844 

491 37,80 29,00 16,28 5266 

631 93,40 4,63 51,30 2309 

758 13,50 8,00 15,80 5467 

774 45,65 22,40 38,70 3293 

803 13,50 22,00 39,20 3524 

806 45,82 35,00 24,74 5096 

832 32,60 15,00 24,96 4639 

848 60,05 33,26 37,71 4140 

1519 69,30 16,30 69,64 1240 

2340 19,00 11,00 85,30 748 

2405 10,65 16,30 56,32 1800 

2578 36,50 15,00 57,38 2076 

3085 81,25 17,60 29,80 4396 

Conclusion 

Coal field sample analysis results can be predicted quite 

successfully with artificial neural networks. With the 

artificial neural network created for the Kütahya-

Gürağaç lignite field, the unknown calorie values were 

successfully estimated at a rate of 97% using known 

depth, ash and humidity values. 
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