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Abstract: Landslide is a frequently occurring natural calamity in the northern areas of Pakistan. The current study is 

aimed to assess the susceptibility of landslide hazard to highlight the vulnerable areas for the purpose of risk reduction 

along Neelum and Jehlum rivers in district Muzaffarabad. A data-driven predictive approach was adopted to conduct 

this study by using Weight of Evidence (WOE) model along with eleven conditioning factors. A spatial distribution 

map of landslides was prepared using orthophoto, previous records, and derivatives (hill shad, topographic openness, 

slope, aspect, curvature) of Digital Elevation Model (DEM). The results show that the roads, lithology, and rivers are 

the most important triggering factors for landslides in both valleys. Approximately 30% of the area is under low 

susceptibility zone in Jhelum valley while only 13% of the area falls under low susceptibility zone in Neelum river 

valley. In Jhelum river valley the medium susceptibility zone covers 35% of the total area whereas, Neelam r iver 

valley has 26% of the total area under medium susceptibility zone.  Around 61% of the land in the Neelam river valley 

and 35% of the land in the Jhelum river valley are under high susceptibility zone. The area under high hazard lies in 

the north-east of the district due to multiple conducive factors to trigger landslides including weak lithology 

(mudstone, sandstone, shales, and clays), high altitude along steep slopes and excessive precipitation (1800 mm/ year). 

Furthermore, the high hazard zone in study area is not suitable for construction purpose but was suitable for plantation. 

The validation result (89.41%) is justifying the performance of this model. 
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Introduction 

Natural disasters are physical phenomena’s which 

occur naturally and triggered by onset of hydrological, 

geophysical, meteorological and biological events  

(Garschagen et al., 2016). Moreover, a variety of 

human induced threats including urbanization, 

poverty, climate change and increasing threat of 

pandemics may influence the future humanitarian 

assistance. According to a 2018 report by CRED and 

UNISDR, in between 1998 and 2017(Wallemacq et al., 

2018), around 1.3 million individuals died and almost 

4.4 billion people have been affected by natural 

disasters, and costing approximately US$2 trillion. 

The frequency and intensity of these disasters is 

increased many folds in the under developed countries 

of South Asia in last few decades. According to 

(Wang, (2020) approximately 409 natural disasters 

occurred worldwide in 2019. Moreover, the Asian 

Pacific region is the one which endured the maximum 

number of natural disasters. 

Pakistan is dreadfully exposed to a range of natural 

disasters such as floods, earthquakes, droughts, and 

landslides. An earthquake (7.6 magnitude) in 2005, 

struck the country and caused massive damage. 

Approximately 1 million individuals died, and 

approximately $576 million indirect income losses 

were recorded (GFDRR, 2019; Mundial, 2014). 

Similarly flooding pose a major financial challenge to 

the country. The likelihood of disastrous incidents are 

the major attributes of a disaster which can help to 

calculate the level of risk which is an essential step of 

decision making process (Zlateva et al., 2011). 

Landslides are the regularly occurring events in 

Pakistan, because of its geophysical and metrological 

characteristics and are accountable for serious 

fatalities and economic losses particularly in northern 

Pakistan due to young Himalayas and active tectonic 

movement. In this scenario it is crucial to prepare 

landslide susceptibility and hazard maps for the region 

on local as well as regional scales. Though, it is quite 

challenging in country like Pakistan in the absence of 

detailed information. However, landslide suscepti-

bility mapping could be carried out for landslide prone 

areas to minimize the risk. 

The purpose of landslide susceptibility assessment 

(LSA) is to estimate the possibility of landslide 

occurrence considering multiple predisposing factors 

and the spatial distribution of past landslides (Vahidnia 

et al., 2010). The susceptibility has an  essential role in 

risk assessment to attain some quicker decision with 

minimum human errors (Bibi et al., 2016). The LSA 

approach has been transformed from knowledge based 
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to data driven or statistical approaches in last few 

years. The bivariate statistical analysis for LSA 

compares each data layer of causative factor to the 

existing landslide. Distribution weights to the 

landslide causative factor are assigned base on 

landslide density and frequency analysis. The weight 

of evidence model is a log linear form of Bayesian 

probability model for landslide susceptibility 

assessment that uses landslide occurrence as training 

points to derive prediction outputs. The aim of this 

paper is to assess landslide susceptibility through 

Weight of evidence model (WOE) for Neelum Jhelum 

river valleys, district Muzaffarabad, Pakistan. 

Muzaffarabad (MZD) is situated on 34° - 24' north 

latitude and 73° 22' east longitude. 

Geological and Tectonic Setting 

Geological setting in study area ranges from 

Precambrian to early Miocene from older to younger 

Hazara formation with dominant lithology green to 

dark green slates with minor limestone and graphite 

layer (Table 1). Muzaffarabad Formation with 

dominant lithology dolomitic limestone, cherty 

dolomite, and chert bands. Hangu Formation with 

dominant lithology Laterite, bauxite, and fireclay. 

There are two major fault lines in the district known as 

Muzaffarabad and Jhelum faults. The key tectonic 

features along this specific zone of deformation were 

produced in the Cenozoic and Mesozoic eras. 

According to Baig and Lawrence, (1987) the Jhelum 

Fault described as left-lateral strike-slip fault (Fig. 2). 

Highly deformed Abbottabad, Muree and Hazara 

formations occur along fault in between Muzaffarabad 

and Balakot. While the Muzaffarabad Fault lies in 

between Muzaffarabad Formation which is of 

Cambrian age and Muree Formation belongs to late 

Miocene age. The Main Central Thrust (MCT) paying 

a role of boundary between lesser Himalayas and 

higher Himalayas whereas, the MCT overlies the 

Lesser Himalayas. Though the higher Himalayans lies 

on northern part of MCT up to Tibet and Everest. 

Materials and Methods 

The data base prepared to calculate the susceptibility 

map consist of variety of secondary and primary 

datasets. The primary information was obtained via 

field observations and in later stage field verification. 

However, the secondary dataset involves different 

maps (land use/ land cover, geomorphology, lithology, 

structure), satellite images, digital Terrain Model 

(DTM) and its derivatives (Fig. 3). The data sets were 

compiled, modified, and rasterized / reclassified to suit 

the needs of this study. Different geological, hydro-

topographical, anthropogenic and geomorphological 

factors were used as input data.  The various datasets 

which are used in this study to prepare susceptibility 

maps are discussed. 

Current study elaborates the process of data collection 

and analysis utilizing the GIS/RS as a tool. A field 

verification was done for verification and validation of 

Landslide inventory (LSI). All the secondary data 

converted into digital form by digitization. 

Consequently, the datasets were analyzed by using 

ARCGIS and SAGA GIS software. 

LS mapping techniques are totally statistical approach. 

The statistical approach has been divided into bivariate 

statistical analysis and multivariate statistical analysis. 

In this research method, the distribution weights have 

been assigned to the landslide causative factor maps 

based on weights of evidence (WOE) model. 

The current study dominantly utilized secondary data 

including multiple maps acquired from a variety of 

sources. It includes, Planning and Development 

department, Pand use Planning department, library of 

Azad Jammu and Kashmir University, Metrological 

department Azad Kashmir and USGS. These datasets 

include slope, curvature, aspect, roads, rivers, fault, 

lithology and land use maps. 

Landslide distribution map is used as base to assess the 

susceptibility of LS in intensity evaluation process of 

hazard (Bibi et al., 2017). Guzzetti et al. (2012) 

mentioned that still the LS inventories are prepared or 

assembled either continuous in time or based on 

causing event e.g. earthquake, rainfall, and flood. The 

literature described four probable stages of 

development of a landslide as: i) pre-failure (strained 

but intact slope); ii) failure (formation of a continuous 

surface of rupture); iii) post-failure (after failure until 

stop the movement); and iv) reactivation, (movement 

of slope along pre-existing surfaces of rupture) 

(Eeckhaut et al., 2007; Hungr et al., 2012; Razak and 

Mohamad, 2015). 

Results and Discussion 

Different predisposing factors including geomorphic, 

geological, hydro topographical and anthropogenic 

factors were considered to evaluate the susceptibility 

of landslide in the area under study. The slope map 

shows slope of landslide in study area. The map is 

divided into six different classes. Each class has its 

own color and angle range. Aspect is computed and 

every individual facet of that surface is assigned with 

a unique code value. The code values represent the 

ordinal or cardinal direction of its slope and adjacent 

areas with the same code is merged into one feature. 

The curvature map is calculated by the second 

derivative of the surface. 

The topographic ruggedness index (TRI) was 

established by (Riley et al., 1999) to express the 

amount of elevation difference between adjacent cells 

of a DEM.  It calculates the difference in elevation 

values from a center cell and the eight cells 

immediately surrounding it. Then it squares each of the 

eight altitude difference values to make them all 

positive and averages the squares. The topographic 



Bibi et al /Int.J.Econ.Environ.Geol.Vol. 11(4) 33-36, 2020 

35 

ruggedness index is then resultant by taking the square 

root of this average. The TRI map is further divided in 

to 11 classes according to elevation differences. Each 

has its own color and angle range. 

The calculation follows description in (Iwahashi and 

Pike, 2007). Terrain surface texture is calculated by 

smoothing input elevation using a median filter over a 

neighborhood specified by the filter size parameter (in 

pixels). Second, pits and peaks are extracted based on 

the difference between the smoothed DEM and the 

original terrain surface. By default, algorithm uses a 

threshold of 1 (> 1 m elevation difference) to identify 

pits and peaks. The spatial frequency of pits and peaks 

is then calculated using a Gaussian resampling filter 

over a neighborhood size specified in the counting 

filter parameter (default is 21 x 21 pixels, as per 

(Iwahashi and Pike, 2007). These metrics are 

combined using the mean of each variable as a dividing 

measure into a 8, 12 or 16 category classification of 

the topography. The TST map is divided into twelve 

different classes. Each class has its own color and 

angle range. 

A buffer layer for rivers and roads was created to 

delineate the impact of roads and rivers on 

susceptibility zones. The road map is prepared from 

the satellite image. The area has a dense road network 

consist of three common classes including main road, 

link road, tracks, and trails. The key finding of this 

study is that the availability of bare earth images 

enhanced the ability of virtual interpretation of 

different types of landslides (active as well as dormant) 

in densely vegetated areas many folds. In fact, the 

mapping and monitoring of old landslides covered by 

dense vegetation is not possible unless used modern 

technology. 

The comprehensive mapping of vegetated terrain with 

the help of high-resolution data enhanced the 

landslides inventory mapping ability, consequently the 

quality of susceptibility, hazard and risk maps will 

improve. A geodatabase was created to store the 

comprehensive landslide inventory including its 

attributes by observing satellite images and cross 

verified by field visits. From the results it is detected 

that the key cause of landslide activation in the study 

area is change in land use/ land cover. The forest 

degradation for construction purpose is significantly 

contributing to the initiation of landslides due to lose 

morphological characteristics of rock types existing in 

study area. 

Most of the debris flow are found along road channels 

which is highlighting the impact of slope disturbance 

activities. In most of the cases the river Neelum and 

Jhelum itself are adding much in deteriorating the land 

and triggering landslides by ground cutting on river 

bends. Furthermore, majority of the houses built in the 

area were found on bodies of dormant landslides due 

to which the vulnerability to life and property is 

increasing many folds. The damage of infrastructure 

including buildings and roads expose the significance 

of spatial distribution of landslide map in land-use 

planning to prevent future damages to life and 

property. In fact, the density and intensity of landslides 

can be seen very clearly which is wider beside the 

riverbanks. 

The spatial distribution of landslide has been mapped 

with the help of ALOS DEM (12.5m) and its 

derivatives as well as orthophoto of the study area. The 

virtual interpretation technique of landslide is done 

with the help of hill shade image, plan curvature, slope 

image, topographic openness image and orthophoto. 

These images were utilized simultaneously to interpret 

the features of landslides e.g. body and scarp of 

landslide, the type of landslide and the topographic 

characteristic of a landslide. Although, all these 

derivatives and orthophoto individually have some 

advantages and disadvantages, for example, the shape 

of the landslide is sharply identifiable in topographic 

openness map. However, it is concluded that the 

interpretation of landslide through visualization could 

only be possible in the presence of very high-

resolution dataset. 

The landslide susceptibility map is classified into three 

key zones. Approximately 30% of the area is under 

low susceptibility zone (Fig. 2) in Jhelum valley, 

conversely, only 13% of the area falls under low 

susceptibility zone in Neelum river valley. In Jhelum 

river valley the medium susceptibility zone covers 

35% of the total area while Neelam river valley has 

26% of the total area under medium susceptibility 

zone. Around 61% of the land in Neelam river valley 

constitutes high susceptibility zone while around 35% 

of the land in the Jhelum river valley is high 

susceptibility zone. 

 
Fig. 1 Landslide susceptibility map 
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The high hazard zone covers a major portion of north 

eastern part of the district where many causative 

factors were favorable to trigger landslide hazards, for 

example, high elevation and weak lithology 

(mudstone, sandstone, shales and clays). Moreover, 

the high precipitation (max 1800 mm) in the area is 

working as an additional triggering factor to activate 

the landslides on steep slopes. It is suggested that this 

land is least suitable for any developmental scheme but 

is suitable for afforestation. The validation value of 

susceptibility is 89.41% which is showing the high 

efficiency of the model (Fig. 1). 

Conclusion 

It is concluded that mass movement is most frequent 

occurring hazard in the study area. It is mainly due to 

weak lithology along with frequent seismic incidences. 

The steep gradient of the terrain in both river valleys 

followed by heavy rain is another important triggering 

factor. The mapping of landslide with the help of 

remote sensing data is an efficient way in spite of 

opting geomorphological field mapping method on 

vegetated terrain. The visual interpretation of 

landslides using numerous DEM derivatives is quite 

useful for preparing an accurate and updated inventory 

in contrast with single dataset interpretation e.g. 

orthophoto. The efficiency of virtual mapping be more 

useful because is to visualize the dataset on multi 

scales and the easy updating of the database.  

The landslide susceptibility index is clearly shows that 

the major landslide concentration areas are situated at 

river incision areas and fault zones. The presence of 

active faults (Jhelum and Muzaffarabad) along with 

weak lithology proved that the landslide activity along 

Neelum Jhelum valleys is highly under control of 

geological and structural factors. The roads are the 

most vulnerable in the area due to anthropogenic slope 

disturbance activity. 
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