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Abstract: Present study is aimed at investigating the solar faculae area from 1990 to 2007 which partially covered the 
22nd and 23rd solar cycle. Rescaled Range Analysis (RRA) and Detrended Fluctuation Analysis (DFA) have been 
adopted to evaluate the behaviour of nonlinear dynamics of solar faculae area. Results show that the value of Hurst 
exponent for solar faculae area from RRA and DFA is negatively correlated. It means it is non-persistent and long-
range correlated. Obtained result is inaccurate so the only solution is to transform the data into stationary data by taking 
differencing. RRA is applied on residuals and RRA to evaluate the fractal property of the time series. Solar faculae area 
investigated in this study is fractal in nature and predictable ass well. Moreover, the time series of solar faculae area is 
non-linear as established by the Brock – Dechert – Scheinkman (BDS) test results. 
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Introduction  
Solanki (2009) and Keller et al. (2004) found that the 
bright region in the periphery of photospheric radiation 
is Solar Faculae. Benoit Mandelbrot was the first who 
introduced this term 25 years ago [9]. These are found 
near the solar limb as well as in the total zone of 
sunspots and are related to the magnetic field (Solanki, 
2009; Keller et al, 2004). Most of the faculae occur in 
plages or fragments of active regions. Solar faculae 
existence have been shown when telescopes are 
pointed at the sun but it is not acertained. Slightly 
higher total solar irradiance at solar maximum is also 
due to the presence of faculae in abundance around 
sunspots (Fröhlich, 2002) . Due to such characteristics, 
solar faculae are more striking to study with other solar 
variables like sunspot numbers and solar flares and 
terrestrial or stratospheric variable like ozone etc. Kim 
et al. (2006) described fractal dimension as a 
quantitative parameter because it defines irregular time 
series characteristics. They used this parameter in the 
solar cycles to investigate different aspects of solar 
activity that are irregular in nature  (R. S. Kim et al, 
2006). Since fractals are infinitely complex patterns, 
these are known as pictures of chaos. Fractals are used 
to display image compressing of self-similar structures 
in nature. There  are various objects like clouds, 
snowflakes, river network, the system of blood vessels, 
the growth pattern of bacteria, the pattern of situations 
like dendrites, etc. (Harrouni, 2003; Harrouni, 2002; 
Maafi, 2000; Maafi, 2003). As solar magnetic activity 
is governed by sunspots and solar faculae, fractals are 
used to study the irregular aspects of solar magnetic 
activity (Deng, 2015). 

Fractal illustrates phenomena that are temporal and 
spatial in nature (Deng, 2015). Its shape is rough and 
can be further divided into parts where every part has 

the same properties as the whole. Consequently, fractal 
geometry came into existence to study the fractal 
shapes that look irregular and chaotic when compared 
with standard geometric shapes. However, it has been 
observed that fractal shapes show ordered behaviour 
because of their distinct property of invariance when 
they contract or expand (Deng, 2015). According to 
Fractal classification by Harrouni et al. (2008), fractals 
are those objects that present a high degree of 
geometrical complexity. Consequently, FD is used to 
describe and model fractals on different scales to show 
their geometrical irregularities. . The description and 
modelling of fractal objects are supported by using a 
dominant index called fractal dimension. . Fractal 
dimension is used to compare the two curves and their 
complexity  (Harrouni et al, 2008). Present study is 
aimed at investigating the solar faculae area from 1990 
to 2007 which partially covered the 22nd and 23rd solar 
cycle. Rescaled Range Analysis (RRA) and Detrended 
Fluctuation Analysis (DFA) have been adopted to 
evaluate the behaviour of nonlinear dynamics of solar 
faculae area. 

Materials and Methods 

The data of solar faculae area has been taken with 
consent from Kislovodsk mountain astronomical 
station of the Pulkovo observatory for the period from 
1990 to 2007.  

Detrended Fluctuation Analysis (DFA) and Rescaled 
Range Analysis (RAA) techniques are used to find the 
Hurst exponent of solar faculae area. Softwares used 
for analysis are, Minitab 17 (Barbara Falkenbach 
Ryan, Thomas A. Ryan, Jr., and Brian L. Joiner, 
Pennsylvania State University), R -package 3.2.5 (Bell 
Laboratories (formerly AT&T, now Lucent 
Technologies) by John Chambers and colleagues), 
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Statistica (STAT SOFT, USA) and EViews 6 (IHS 
Mar kit Ltd, London).  

Fractal Dimension 

In principle, the fractal dimension FD is given by 

FD = - log N (bx) / ln (bx)              (1) 

Where, covering  a structure of Euclidean dimension 
ED (1, 2, 3 for 1D, 2D, 3D structures, respectively) 
with boxes of size bx; N (bx) is the number of boxes 
that contain a part of the structure. The box-counting 
dimension, which is a practical application of the 
concept, is given by 

BFD = - lim (bx ->0) log N (bx) / log (bx)             (2) 

The randomness of a time series is determined by 
fractal dimensions which suggests if nature is chaotic 
or not of the physical structure. As the indicator of the 
interior solar structure is solar neutrino flux, so it is 
obvious to find the nuclear energy generation of   the 
sun by studying the solar neutrino flux source so that it 
can help to determine whether the sun is fractal or not. 
This technique has suggested the rigid nature of solar 
features as solar faculae, solar flare etc. If FD of any 
physical structure is observed lying between1 to 2, it is 
classified as fractal and irregular in nature (Ghosh, 
2020). 

FD method is used to observe complexity and to prove 
that solar faculae area is fractal in nature. The 
relationship of FD and H as given by Das et al., (2009) 
is as follows: 

FD = 2 – H                 (3) 

The time-series data’s dynamical behaviour is 
represented by FD and H.. Anti-persistent and 
persistent nature are mainly compared through Hurst 
exponent. In this study relation (1.2) will be used to 
analyse the nature of variables. The Fractal dimension 
tells the trend-reinforcing or persistent behaviour for 
FD < 1.5  which means that if there is an increase in 
the curve for a period then the increment will be 
continued for another period, and this could be 
considered as a biased random walk process. Also, the 
degree of persistence is dependent on the extent for H 
close to 1. However if FD >1.5 it shows an anti-
persistent, ergodic, or mean-reverting behaviour, this 
means that a period of increases tends to show up after 
a period of decreases, thus the degree of anti-persistent 
depends on the extent for H close to 0.5. 

After calculating FD, predictability indicators P is 
determined. Statistical relationship  presented by Deng 
LH et al, 2015 is: 

P = 2 (FD - 1.5)                (4) 

If the value of P is zero, then the system under 
consideration will not be predictable. Although, when 

the value of P becomes close to one, then that system 
that is dynamical is considered as a very predictable 
process. 

The predictability P is close to zero when FD ~ 1.5, 
apparently for a Euclidean dimension ED=2.On the 
other hand, the system is predictable if P~1 occurs for 
FD ~ 2. This means that the system is predictable if a 
2D structure is close to non-fractal.  

Rescaled Range Analysis (RRA) 

RRA analysis is applied to evaluate the fractal property 
of the time series and the long-range correlation. This 
analysis is simple but strong method for fast fractal 
analysis (Das, 2009).  

This method evaluates the  series that diverged from 
their mean ( López-Montes et. al., 2012). Moreover, it 
can calculate Hurst Exponent (Krištoufek, 2010; 
KKW, 2014; Kannan, 2012). . The Hurst Exponent is 
the measure of the smoothness of fractal time series 
based on the asymptotic behaviour of the rescaled 
range of the process. 

RAA analysis shows the difference of original time 
series from correlated time series  (Peter, 1996; Peters, 
1994). 

Consider the time series }.,,.........,.{ 321 NzzzzZ =  
with complete size N such that N classifies further 
small samples (n) so that the series becomes 

accordingly as ,........
8

,
4

,
2

, NNNN  and so on. The 

average rescaled range is then calculated for each value 
of n. The mean adjusted series (y (n)) (deviation of the 
time series Zi from its mean  𝑍̅𝑍 ) can be proposed for 
eachvalue of n. The procedure for the rescaled range 
for a partial time series of length n is as follows, 

Step: 1 Computed mean ( 𝑍̅𝑍 ) and adjusted cumulative 
series y (n) for i=1, 2, 3 …n,  

y (n) = ∑
=

−
N

i
i zz

1
][                (5) 

Where   𝑍𝑍𝑖𝑖 = original time series data, 𝑍̅𝑍 = mean and N 
is discrete-time.  

  Step: 2 Find range (R) 
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Step: 4 The Rescaled range is then computed from 
step 2 and 3 and the average of overall partial time 
series of length n. 
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=
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zz
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i

            (8) 

Step: 5 Compute Hurst exponent (H) 

Suppose the range (R) of given time-series data that is 
dependent on a sequence of arbitrary variables has a 
fixed standard deviation (S), Both R and S will be 
independent. The ratio R/S will follow a power law 
given as: 

HNSR )(/ α                (9) 

Applying log on both sides, we have: 

)(log
)/(log

2

2

N
SRH =             (10) 

By applying the least square procedure against 𝑙𝑙𝑙𝑙𝑙𝑙2 
(R/S) vs. 𝑙𝑙𝑙𝑙𝑙𝑙2 (N), the slope of the best-fitted curve 
will determine the value of H  (Kale MD,2005). 

 The procedure is repeated for whole samples (n) over 
the time series data and dividing each sample interval 
by two and determining R/S for each sample (n) which 
is shown in figure 1 the slope of the best-fitted curve 
gives the value of H=0.30 of solar faculae which are 
shown in equation y = 0.3x + 0.57. AR (p) residuals 
are estimated before R/S analysis and applied on data 
of ozone by Weng to remove linear dependency 
(wengYC,2008). 

 

Fig. 1 Plot of log (r/s) vs. log (n) of rescaled ranged analysis of solar 
faculae area whose fitted line slope evaluates the hurst exponent for 
the year from 1990 to 2007. 

Unit Root Test is also used to find the stationarity of 
the variable as RRA is applied on stationary time 
series. 

Detrended fluctuation analysis (DFA) 

Detrended Fluctuation Analysis is applied to the time-
series data to calculate interrelated properties that are 
extracted from various structures [23,31]. To 
determine DFA, considering the time series {Ui} i = 1, 
2, 3 … N, where N is the size of Faculae area data 
series. The following steps will determine DFA: 

 
Fig 2 Plot of Log F (n) vs. Log (n) of Solar Faculae area of 
Detrended Fluctuation Analysis. 

 

Fig. 3 Plot of actual, forecast and kalman values of solar faculae 
area. 

H(n) the time series is determined by: 

H (n) =∑ (Ui
𝑛𝑛
𝑖𝑖=0 − Ū)            (11) 

Where Ū represent the mean value 

The least-square procedure is applied to each segment. 
Each segment is obtained by dividing the series into 
boxes of equal sizes.  

To detrend every segment, subtract Ĥ(n) from H(n): 

  H (n) – Ĥ (n)            (12)  

The following relation is used to find RMS variation 
between Detrended and original time series: 

H (n) =�1
𝑁𝑁
∑ �H(n) _ Ĥ(n)�𝑁𝑁
𝑖𝑖=1 P

2                 (13) 

Hurst exponent α is determined by: 

H (n) ~ nα              (14) 

y = 0.3077x + 0.6036
R² = 0.9933

0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5 6 7 8

Lo
gR

/S

LogN

Solar Faculae Area (PPM) 

R² = 0.8458

9
9.2
9.4
9.6
9.8
10

10.2
10.4
10.6
10.8

0 2 4 6 8

L
og

 F
(n

)

Log (n)

Solar Faculae Area (PPM)

0

500

1000

1500

2000

2500

3000

3500

4000

1 2 3 4 5 6 7 8 9 10

Solar Faculae Area

ACTUAL (Xt) Kalman  (Ft)



Zehra and Jilani  /Int.J.Econ.Environ.Geol.Vol. 12(2) 50-59, 2021 

53 

To get the relationship between H (n) and n, the above 
steps must be applied to all parts (Zhang, 2011). The 
graph between H (n) and n  formed  (shown in figure 
3) the slope  will be called as Hurst exponent which is 
denoted by ‘α’. If the value of α is 0, then no 
significant correlation is  found. If it is > 0.5 then the 
correlation is positive while if < 0.5 it is said to be anti-
correlated in the original time series (Bashan  et. al., 
2008; Jan  et. al., 2018). 

The BDS test 

BDS is a strong tool that distinguishes independent 
series from original series because time series are 
highly irregular ( Akintunde etal ,2015). Since BDS 
test is two-tailed, the test statistic is less than the 
negative critical z-value or higher than the positive 
critical z-value, the null hypothesis will be rejected. 
For example, α = 0.05, the critical z-value = ±1.96. 

H0: linearly dependent series 

H1: non-linearly dependent series (Akintunde et. al., 
2015).  

Kalman Filter  

Kalman filter is applied to evaluate the forecasted 
values of the fitted models so the errors can be 
reduced. Kalman filtering is an approach that uses two 
independent values to form a weighted value of the 
forecast. One value is based on previous knowledge 
and the other is based on new knowledge. Thus, the 
Kalman filter works to combine these two pieces of 
values to extract an enhanced and upgraded forecast 
value.  

If forecast period is denoted by Ft in period t, and new 
knowledge is denoted by Xt then forecast period t + 1 
is expressed as 

Ft+1 = 𝜎𝜎𝐹𝐹
2𝑋𝑋𝑡𝑡+ 𝜎𝜎𝑋𝑋

2𝐹𝐹𝑡𝑡
𝜎𝜎𝐹𝐹
2+ 𝜎𝜎𝑋𝑋

2              (15) 

𝜎𝜎𝑎𝑎2 =  ∑ 𝛼𝛼𝑡𝑡2𝑛𝑛
𝑡𝑡=2 =  𝑅𝑅𝑅𝑅𝑅𝑅

𝑁𝑁
            (16) 

Where, 

RSS = residual sum of squares 

N = number of residuals  

Kalman filter is used because it allows non-stationary 
data to be implemented (Gough et. al., 1992; 
Shanmugan et al, 1988). 

Largest Lyapunov Exponent 

The positive largest Lyapunov exponent (LE) is a 
marker of chaos, which also means dependent 
sensitivity on initial conditions (Rosenstein MT,etal, 
1993). . In phase space, the distance between nearby 
trajectories change exponentially over time is 
described by LE. Custom code in MATLAB (Math 
Works, Massachusetts, USA) is used to carry out all 
the processing. The linear trend in the data was 
removed before carrying out any calculation of any 
parameter related to chaos theory analysis (Williams 
et. al., 1997). The LE was calculated through the use of 
an algorithm (Rosenstein et. al., 1993) which is 
suitable for small data sets and robust to noise. The 
resulting slopes of the largest Lyapunov exponent for 

 

Fig. 4 chaos theory results for each processing step for solar faculae. 4a detrended accommodation time trace. 4b mutual information. The first 
minimum is the embedding lag which is five data points. 4c the percentage of false nearest neighbors versus embedding dimension. The dimension 
is three in this case as this results in ≤5% false nearest neighbors. 4d the time evolution of the average separation of nearby trajectories in phase 
space. The slope of the linear rise is the le. The end of the linear rise is the limit of predictability. 4e the reconstructed phase. 
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the time series are determined through the least-
squares line fitting method. These are found through 
the reasonable values of the largest Lyapunov 
exponent which is LLE = 0.0351 

Results and Discussion 

The FD is not dynamical but a statistical quantity that 
measures the dynamical complexity of the chaotic time 
series. RRA analysis is used to estimate the 
nonlinearity of solar faculae. The nonlinear dynamics 
of the solar faculae area has been investigated using 
RRA analysis and DFA methods in this investigation. 
The FD of solar faculae area obtain from both methods 
have been illustrated in “Table 2” and “Table 3”. It 
recognises that the solar faculae area is anti- persistent 
in nature as their FD is 1.70 and 1.76 from RRA 
analysis and DFA methods respectively. 

Since FD represents the roughness and the Hurst 
exponent represents the smoothness of the data, the 
Hurst exponent is attained to detect more accurate, 
persistent and smooth variable. Table 1” depicts H for 
smoothness from which it is investigated that solar 
faculae area is smooth. It is clear from Table 2 and 3 
that the fractal dimension of solar faculae area lies 
between 1 and 2 (as stated by Ghosh, 2006 on the data 
of solar neutrino flux) from which it concluded that 
solar faculae area are fractal in nature because their FD 
is 1.70. 

The predictability indicator value of the solar faculae 
area is greater than zero indicating that the variable is 
predictable in nature. The predictability indicator value 
of solar faculae area is 0.40 and 0.52 by RRA analysis 
and DFA method respectively which is greater than 

zero indicating that the variable is predictable in 
nature.  

Table8 for BDS test shows that test statistics is less 
than the critical values (±1.96). Consequently, the 
null hypothesis is neglected for the linear 
dependency of the series.and  the solar faculae area 
is non-linearly dependent. Before fitting the model, 
the stationarity has been checked out out (Jan et. al., 
2018; Akintunde et. al., 2015; Wang et. al., 2006; Özer 
et. al., 2010). 

 Augmented Dickey-Fuller statistics is used to apply 
the Unit Root Test on the time series to confirm their 
stationarity (Akintunde et. al., 2015).Unit root test is 
applied on solar faculae area to confirm their 
stationarity  as  shown in Table 7.This shows that 
statistical levels have exceeded the critical value. Thus, 
clarifies the stationarity of the series at the first 

difference, so our time series is non-stationery. 

In this investigation, Hurst exponent of solar faculae 
area is obtained through RRA analysis where AR 
(5,1,8) residuals are used because it formed the best-
fitted model. The coefficient of determination (R2) of 
this model is obtained as 75% and its forecast equation 
is also shown below which is generated from values of 
“Table 10”.This calculated value of solar faculae area 
matched with the forecast value of the ARIMA model,  
shown in Table 9. Table 4 shows the whole procedure 
by taking different residual samples. When the slope of 
the best-fitted line is taken between log N and log 
(R/S) then Hurst exponent (H = 0.31) is obtained 
which is indicated in Figure 1. Moreover, equation (3) 
is used to get FD = 1.70. Hence, it is proved by 
determining FD and H that the solar faculae area data 

Table 1 Hurst Exponent and Fractal Dimension Relationship. 

FD H Nature of Process Correlation 
˃1.5 ˂0.5 Anti-persistent Negative 
=1.5 =0.5 Brownian Zero 
˂1.5 ˃0.5 Persistent Positive 

Table 2 Fractal Dimensions and Hurst Exponent of Solar Faculae Area obtained by R/S analysis 

Variables Fractal Dimension Hurst Exponent Predictability indicator Model R2 

Solar Faculae Area 1.70 0.30 0.40 ARIMA (5,1,8) 75% 

Table 3 Fractal Dimensions and Hurst Exponent of Solar Faculae Area obtained by Detrended fluctuation analysis. 

Variables Fractal Dimension Hurst Exponent Predictability indicator 
Solar Faculae Area 1.76 0.24 0.52 

Table 4 R/S analysis of Solar Faculae Area. 

size (N) Xmax Xmin R S R/S LOG N LOG (R/S) 
128 2482.7 -2330.5 4813.2 739.4 6.51 7 2.7 
64 2310 -2330 4641 804 5.772 6 2.52 
32 2310 -2330 4641 1028 4.51 5 2.17 
16 2310 -1263 3573 1025 3.48 4 1.79 
8 2310 -1263 3573 1222 2.92 3 1.54 
4 1830 -740 2570 1114 2.31 2 1.21 
H 0.30       

FD 1.70       
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is anti-persistent because H is less than 0.5 and FD is 
greater than 1.5 and it is long-range correlated. 

 “Table 5” presents the correlated properties of the 
Solar Faculae Area which is the purpose of DFA. 
Equations (13) and (14) are  used to assess these 
results. The value of the Hurst Exponent is 0.24. 

Moreover, equation (3) is used to get FD = 1.76. Table 
6 presents the estimated result for DFA of the solar 
faculae area. The best-fitted line slope is calculated by 
log n vs. log F (n) line, s is shown in Figure 2. Thus, 
DFA also proves that solar faculae area data is anti-
persistent because H is less than 0.5 and FD is greater 
than 1.5. 

As RRA analysis is done on stationary time series, its 
results are more accurate than DFA. Unit root test 
identified the data of solar faculae as non-stationary, 
the result obtained is inaccurate so the only solution is 
to transform the data into stationary data. Also, if the 
time series data show a deterministic trend, the 
inaccurate and poor results can be avoided by 
detrending and transformation from non-stationary to 
stationary process can be done by differencing that’s 
why RRA is applied on residuals. Sometimes, the 
time-series data show stochastic and deterministic 

trend altogether thus to avoid misleading results 
detrending and differencing must be applied to remove 
deterministic trend and variance respectively. (Matos 
et. al., 2004). 

If the relationship between actual and forecasted values 
is strong then the model is exemplified as the best fit. 

To check this relationship select 200 values out of 216, 
and fit the model on 200 values and forecast the next 
10 values. Forecast values of solar faculae area are 
generated from Statistica software (“As shown in 
Table 9”) after being corrected with a Kalman filter. 
From (Table 9, Figure 3) compares the predicted and 
actual future values. This purpose is estimated to 
confirm if the model minimizes the difference between 
actual values and the forecasted values of data points.  

Variations in solar radiations reaching the earth are due 
to a balance between decreases caused by sunspots and 
increases caused by bright areas called faculae which 
surround sunspots, so to check the variability of solar 
faculae it has been forecasted( D’Aleo et. al., 2016) . 

Tests for the dependence of nonlinearity 

The results from table 8 suggest that the solar faculae 
area has non-linear dependence because the value of 

Table 5 Detrended fluctuation analysis for Solar Faculae Area. 

H estimate 0.24 
Domain     Time 
Statistic             RMSE 
Length of series        215 
Block detrending model  x ~ 1 + t 
Block overlap fraction  0 
Scale ratio             2 
Scale 4.0000 8.0000 16.0000 32.000 64.0000 
RMSE 630.47 701.53 769.82 888.57 1487.5 

Table 6 Estimated Detrended fluctuation Analysis of log F(n) vs. log (n) of Solar Faculae Area from 1990 to 2007. 

Level (n) F(n) 𝐥𝐥𝐥𝐥𝐥𝐥𝟐𝟐(𝐧𝐧) 𝐥𝐥𝐥𝐥𝐥𝐥𝟐𝟐𝐅𝐅(𝐧𝐧) 
1 64 1487.5 6 10.54 
2 32 888.57 5 9.79 
3 16 769.82 4 9.59 
4 8 701.53 3 9.45 
5 4 630.47 2 9.30 

Table 7 Unit Root Test of Solar Faculae Area. 
AT LEVEL: 
 

  t-Statistic Prob.* 
Augmented Dickey- Fuller test statistics -2.29 0.43 
Test critical values: 1% level -4.00  

 5% level -3.43  
 10% level -3.14  

 
AT FIRST DIFFERENCE: 

  t-Statistic Prob.* 
Augmented Dickey- Fuller test statistics -17.34 0.0000 
Test critical values: 1% level -4.00  

 5% level -3.43  
 10% level -3.14  
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the BDS test concerning each dimension lies within the 
critical region. Therefore, the null hypothesis is being 
rejected. This is one of the indications of the fractal 
nature of the solar faculae area. Tamil et. al. (2015) 
investigated in their paper that sunspot number is 
dynamic in nature and have a low-dimensional chaotic 
attractor and solar activity is a chaotic phenomenon. 
They proved this nature with different nonlinear 
dynamic methods, with varying levels of complexity. 
These dynamic nonlinear methods are average mutual 
information and embedding dimension method and the 
correlation dimension method. These methods have 
identified chaotic behaviour in the sunspot number and 
solar activity is a chaotic phenomenon. Furthermore, as 
solar activity is governed by chaotic attractor and 
sunspots and solar faculae both are parts of solar 
activity and our time series is long-range correlated it 
is stochastic not chaotic in nature as proved by the 
value of the largest Lyapunov exponent (Qin, 1998). 

Largest Lyapunov Exponent 

In figure 4, the plot shows variations of the 
divergence as a function of the time interval for 
solar faculae. This figure also shows the profiles of 
the curve that shows linear increases and in 
comparison flat regions with some fluctuations that 
are superimposed on the part of the curves. The 
resulting slopes of the largest Lyapunov exponent 
for the three-time series are determined through the 
least-squares line fitting method. These are found 
through the reasonable values of the largest 
Lyapunov exponent which is LLE = 0.0351 

The information theory method, claims that the 
largest Lyapunov exponent will result in the more 
complex dynamical behaviour of the system. The 
results of this study show that the dynamic 
behaviour or the chaotic degree of the solar faculae 
is not complex. 

As sunspots and solar faculae, both are the parts of 
solar activity cycle and there is a highly significant 
negative correlation between the relative sunspot 
numbers and the total atmospheric ozone. (Willett, 
1962) So solar activity can cause the ozone levels in 
the upper stratosphere to be substantially depleted, 
but since most of the ozone is in the middle 
stratosphere, the effect on the total ozone column is 
negligible. There is only 0.1 % more UV radiation at 
the sunspot maximum than at minimum which 
causes only a 2% change in ozone concentrations. 

Similar to sunspots, faculae are also concentrations of 
magnetic field lines, but their diameter is much smaller 
than a few hundred kilometres. This difference in size 
produces a very important change. Instead of blocking 
energy, like sunspots, faculae transport energy more 
efficiently to the Sun’s surface. This results in faculae 
being brighter than the rest of the Sun’s surface. In 
general, the faculae’s brightness is enough to 
overcompensate for the local darkening of the sunspots. 
Therefore, the Sun is brighter at maximum activity. As 
there is only 0.1% more UV radiation received at 
sunspots maximum this variation is very small. 
However, in some specific parts of the light spectrum, 
such as in the near- and mid-ultraviolet, the variation 
can be much larger from 1 – 10% in the ultraviolet 

Table 8 BDS Test of Solar Faculae Area. 

Dimension BDS Statistic Std. Error z-Statistic Prob. 
2 0.09 0.003 27.74 0.00 
3 0.16 0.005 29.10 0.00 
4 0.21 0.007 32.01 0.00 
5 0.24 0.007 34.78 0.00 
6 0.26 0.007 38.55 0.00 

Table 9 Forecast Cases and Kalman Correction for Solar Faculae Area (5, 1, 8). 

Case No: Actual 
(Xt) 

Forecast (Ft) 
Corrected values 

(Ft+1) 
Lower 

90.0000% (Ft) 
Upper 

90.0000% (Ft) 
Std.Err. 

(Ft) 
201 993 710.1544 763.6753846 -622.52 2042.834 806.154 
202 54 798.4592 657.5900826 -610.80 2207.715 852.476 
203 1126 968.5504 998.3435817 -456.63 2393.729 862.109 
204 889 624.3120 674.3971445 -842.69 2091.314 887.408 
205 1068 458.2605 573.6374777 -1028.88 1945.400 899.589 
206 334 753.3369 673.9885461 -743.69 2250.361 905.568 
207 178 485.4493 427.2727212 -1056.43 2027.329 932.702 
208 335 414.3572 399.3409975 -1182.26 2010.978 965.816 
209 346 316.5365 322.1116736 -1336.79 1969.863 1000.117 
210 631 417.2732 457.7153084 -1266.94 2101.486 1018.801 

Table 10 Parameters for model equation of Solar Faculae Area (5, 1, 8). 

Estimate constant ɸ1 ɸ2 ɸ3 ɸ4 ɸ5 - - - 
-14.8010 -0.9654 -0.5145 0.2974 0.6508 0.7932 - - - 

_ Ɵ1 Ɵ2 Ɵ3 Ɵ4 Ɵ5 Ɵ6 Ɵ7 Ɵ8 
_ -0.3092 0.3034 0.7115 0.5308 0.3884 -0.6660 -0.2525 -0.1064 
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(Shindell, 1999) . So solar faculae have much impact on 
ozone layer depletion as compare to sunspots. 

Model Equation 

Ŷ𝑡𝑡 =  µ +  𝑌𝑌𝑡𝑡−1 +  𝛷𝛷1 (𝑌𝑌𝑡𝑡−1 −  𝑌𝑌𝑡𝑡−2) +  𝛷𝛷2 (𝑌𝑌𝑡𝑡−2 −
 𝑌𝑌𝑡𝑡−3) + 𝛷𝛷3 (𝑌𝑌𝑡𝑡−3 −  𝑌𝑌𝑡𝑡−4) + 𝛷𝛷4 (𝑌𝑌𝑡𝑡−4 −  𝑌𝑌𝑡𝑡−5) +
 𝛷𝛷5 (𝑌𝑌𝑡𝑡−5 −  𝑌𝑌𝑡𝑡−6) −  𝜃𝜃1𝑒𝑒𝑡𝑡−1 −  𝜃𝜃2𝑒𝑒𝑡𝑡−2 −  𝜃𝜃3𝑒𝑒𝑡𝑡−3 −
 𝜃𝜃4𝑒𝑒𝑡𝑡−4 −  𝜃𝜃5𝑒𝑒𝑡𝑡−5 −  𝜃𝜃6𝑒𝑒𝑡𝑡−6 −  𝜃𝜃7𝑒𝑒𝑡𝑡−7 −  𝜃𝜃8𝑒𝑒𝑡𝑡−8   

Ŷ201 = -14.8010 + 393 + (-0.9654) (393 – 563) + (-0.5145) 
(563 – 739) + (0.2974) (739 – 704) + (0.6508) (704 – 
2008) + (0.7932) (2008 – 756) – (-0.3092) (-260.59) –         
(-0.3034) (-647.00) – (0.7115) (-474.43)– (0.5308)              
(-505.59) – (0.3884) (808.01) – (-0.6660) (-148.35) –          
(-0.2525) (-1022.38) – (-0.1064) (-1176.89) Ŷ201 = 713.36 
655  

Conclusion 

It has been recognised that FD for solar faculae area 
is anti-persistent in nature. The FD-H analysis also 
verifies that the solar faculae area is fractal in nature. 
Additionally, the solar magnetic activity cycle is 
fractal in nature as indicated by long-range 
correlation. DFA analysis is found more suitable for 
non - stationary time series as compared to RRA for 
stationary time. Solar faculae area found to be non - 
stationary as depicted by Unit Root Test but the result 
obtained is inaccurate so the only solution is to 
transform the data into stationary data which is done 
by differencing. Hence, RRA is more suitable for 
estimating the parameters of solar faculae area. 
Linearity is rejected by the BDS test application and 
proves that the time series is non-linear. Results of 
present study suggest that the dynamic nonlinear 
behaviour of the solar faculae is stochastic not 
chaotic and complex . Value of the largest Lyapunov 
exponent for solar faculae area is LLE = 0.0351which 
proves that solar faculae area is not chaotic. It is also 
deduced that solar faculae has more impact on ozone 
depletion than sunspot number because of variation in 
solar activity cycle found in the upper stratosphere.  
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