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Petrogenesis of Bir Madi Gabbro-Diorite and Tonalite-Granodiorite
Intrusions in Southeastern Desert, Egypt: Implications for
Tectono-Magmatic Processes at the Neoproterozoic Shield
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Abstract. The Neoproterozoic rocks of the Bir Madi arca, south castern desert. comprise a Metagabbro-Diorite Complex
(GDC) and a Tonalite-Granodiorite Suite (TGrS). The GDC has a weak tonalitic to strong calc-alkaline character and is
made up of olivine gabbro, hornblende gabbro, diorite and monzodiorite. The olivine gabbro is characterized by abun-
dancc of augitc and labradorite with pscudomorphic serpentine. The hornblende gabbro is mainly composcd of horn-
blende, labradorite, andesine and minor amounts of quartz with or without augite. The diorite consists essentially of
andesine, hornblende, biotite and quartz. The GDC is compositionally broad, with a wide range of Si0, (46-57 %) and
pronounced enrichment in the LILE (Ba and Sr) relative to the HFSE (Nb, Y and Zr). The GDC rocks exhibit petrological
and geochemical characteristics of arc-related mafic magmas, derived possibly from partial melting of a mantle wedge
above an early Pan-African subduction zone of the Neoproterozoic Shield. The tonalite and granodiorite have a calc-
alkaline affinity and show the geochemical signatures of I-type granitoids. The TGrS contains amphibolite enclaves and
foliated gabbroic xenoliths. Based on the ficld evidence and geochemical data, the GDC and TGrS arc not related (o a
single magma type through fractional crystallization. The presence of microgranular amphibolite enclaves in the tonalitic
rocks suggest against their generation by partial melting of a mantle-derived basaltic source. The tonalitic magma
originated from partial melting of an amphibolitic lower crust by anatexis process at a volcanic arc regime during
construction of the Arabian-Nubian Shield. Fractional crystallization of K-feldspar and biotite gave more developed
granodiorite variety from the tonalitic magma. The gabbroic xenoliths are similar in the chemical composition to the
investigated metagabbros. They are incompletely digested segments from the adjacent metagabbro rocks incorporated
into the granitic magma through an assimilation process.

Introduction

The Neoproterozoic rocks of the eastern desert, Sinai,
northern Sudan and western Saudi Arabia are collectively
termed the Arabian-Nubian Shield (ANS) (Gass, 1981).
The ANS is considered as one of the best examples of
crustal growth through terrain accretion of intra-oceanic
mantle-derived magmas, initial island arcs and micro-con-
tinents during the 950-550 Ma Pan-African event (Vail,
1983). It thus, represents juvenile arc development by
subduction-related accretion in an oceanic environment
(Stern, 1994). The occurrence of ophiolitic sutures and
theirassociation withvoluminous calc-alkaline rocks have
led most investigators to agree that the shield regions
evolved by juxtaposition of a scrics of island arcs with
later development of continental magmatic arcs (Abdel-
Rahman and Martin, 1987). The Pan-African crustal com-
ponents of the eastern desert consist mainly of gneisses,
ophiolitic serpentinites and metagabbros with tholeiitic
metabasalis, metasediments, island arc metavolcanics and
metagabbro-diorite, older granitoids, Dokhan volcanics,
Hammamat sediments, younger gabbros and younger
granitoids (El-Gaby et al., 1988).

The Neoproterozoic gabbroic rocks of Egypt have been
subdivided invarious ways (Basta and Takla, 1974; Takla
ctal., 1981; Ghoneim et al., 1992; El-Sheshtawi et al., 1995;

Basta, 1998; Khalil, 2005). These rocks are essentially
classificd as older and younger gabbros (Takla ct al.,
1981). The older gabbros are regionally metamorphosed
and are considered as a member of ophiolitic sequence
(i.e. ophiolitic metagabbro: El-Sharkawi and El-Bayoumi,
1979) or island arc assemblage. The syntectonic gabbro-
diorite intrusives have a calc-alkaline affinity and are
interpreted to be belonging to island arc association
(El-Gaby et al., 1990). The emplacement of the gabbro-
dioritc plutonisms occurred at around 987-830 Ma
(Hashad, 1980; Abdel-Rahman and Doig, 1987). Thus,
they represent the earliest phase of crustal growth in the
Nubian Shield of Egypt (Abdel-Rahman, 1990). The
younger gabbros occur as small, fresh, unmetamorphosed
intrusions comprising ndrite, norite-gabbro, olivine
gabbro and troctolite varicties (Basta and Takla, 1974).
These gabbros mainly represent the late tholeiitic/
calc-alkaline, post-tectonic mafic magmatism of the Pan-
African event, which was emplaced before the younger
granitoids (Hassan and Hashad, 1990).

Granitoid rocks constitute a major component of the
basement outcrop in Egypt (40%), which in general are
classified into two main distinct groups: older and younger
granitoids (Akaad and Noweir, 1980). According to
Harris etal. (1984) and Stern and Hedge, (1985), the older
granitoids comprise syn-tectonic calc-alkaline tonalite-
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614 Ma. These are also known as su
granites (Husseinetal,, 1982) or granitoid rocks of island
:m‘ stape (Ragab, 1987) The parent magmas of the older
granitoids may be originated by partial melting of mantle
wedge with litte or no crustal contamination (Hussein
ctal, 1982) orby anatexis process of amphibolitic lower
crust (Furnes et al., 1996: Moghazi. 1999) in subduction
zones. The vounger ganitoids coveraw ide compositional
spectnim, ranging from quartz monzonite to alkali gran-
ites (Greenberg, 1981) and have a limited time span of
610-550 Ma (Sternand Hedge, 1985)

This work introduces ficld, petrographical and geochemi-
cal investigations for metagabbro—diorile and tonalile-
granodiorite intrusive rocks at Bir Madi arca in the south-
em part of Egypt (Fig. 1). The main aim is to integrate the
field evidences and geochemical data to discuss plau-
sible petrogenetic processes associated with such mafic
and silicic magmatisms at Arabian-Nubian Shield

Geological Setting

The Bir Madi area lies in southeastern desert located .

betweenlongitudes 35°00°-35° 12"Eand Jatitudes 22°45"-
23°00°N (Fig. 1). Despite casy access (o the region, west
of Shalatein through a desert road, the Wadi Madi arca

attention and only few geolopicy
studics were conducted (Ashmawy 1987; Aly etal., 1997
Fl-Amawy ctal 2000). The Neoprolerozoic roc ks in
study arca consist mainly of serpentinites, metavolcanic

GDC, older granitoids (tonalite-granodiorite), younge
pabbros and vounger granitoids (Fig.1). The sepentinitc

. issive and light green to deep browy,

has received little

are finc-grained, m:
in colour. They are p.’lrll(,lll-’lll)’ foliated and al(ered (o
talc-carbonates. The scpentini(cs have a structural con
tact with the adjacent rocks The metavolcanic rocks are
mainly composed of basalts, meta-andesites, meta-dacites
and meta-rhyolites. These are fine-gained, green to gray-
ish green and reddish brown in colour and sometimes
exhibit porphyritic and amygdaloidal textures

The mclugubbro-dlorilc rocks occupy the castern and
western flanks of Wadi Atluk, with a nearly moderate
relief, which have an obvious intrusive contact agains
serpentinites and metavolcanics. The metagabbro-dior-
ite masses are heterogencous medium to coarse grained
and dark to pale green in colour These arc usually
massive with pronounced foliations along their outer
parts. The foliations are generally striking NW and
dipping at gentle and moderate angles towards NE

The metagabbroic rocks contain mafic enclaves (up to
20 cm in size), which have blackish green colour and show
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irregular outhnes. The enclaves are fine-grained (ca

0.5 mm) and posses larger proportions of hornblende
compared with their hosts. The tonalite-granodiorite rocks
mainly occur around Bir Madi and along Wadi Shallal E]
Gharbi. These are equigranular, coarse to medium-grained
with pale gray to pinkish gray colour and show an intru-
sive contact with the neighboring metagabbro-diorite, as
indicated by presence of some tonalilic patches in rims
of the gabbroic rocks. The tonalite-granodiorite rocks
arc massive except those found near shear and fault zones.
where a gneissose texture is observed. The foliation of
the gneissose rocks strike mainly in NNW and dip out-
ward at a moderate angle. In places, the massive tonalite-
granodioritc contains foliated metagabbro and amphibo-
lite xenoliths, which retain variable shapes inside the non-
foliated older granitoids, as recognized by El-Amawy
et al. (2000) in the Wadi Madi area. The metagabbro
xenoliths are medium-grained with hazy rims partly
digested by the tonalite and granodiorite varieties.

The amphibolitic enclaves arc finc-grained, ovoid to
ellipsoidal in shape and lack any significant reaction with
the hosting tonalite. The younger gabbros occur as a
large circular mass in the northeastem part of the studied
area, intruding the metamorphosed rocks and the tonalite-
granodiorite. The contact between the gabbros and
metavolcanics is sharp and distinct. The younger
granitoids have limited distribution in the study area,
which are massive, medium to coarse grained and pink in
color commonly cut across by a series of mafic and felsic
dykes.

Materials and Methods

The petrographic study of fifty samples belonging to
Metagabbro-Diorite Complex (GDC), Tonalite-Grano-
diorite Suite (TGrS), encountered enclaves and xenoliths
was carricd out. Based on microscopic study, selected
samples from the GDC, TGrS and gabbroic xenoliths were
chemically analyzed. Major oxides were measured by wet
chemical analysis, whereas trace elements were deter-
mined by X-ray fluorescence technique. Calibration was
done with the international reference samples, some of
which were also run as unknown. Loss on ignition was
calculated by heating about 3 grams of the rock powder
ina porcelain crucible at about 1000° C for 4 hours, until
constant weight was attained (Table 1).

Petrography

Metagabbro-Diorite Complex (GDC): Microscopically,
the Bir Madi GDC consists of four main rock varictics:
olivine gabbro, hornblende gabbro, diorite and
monzodiorite. The olivine gabbro is characterized by abun-
dance of clinopyroxene (augite) and plagioclase with
pseudomorphic serpentine. The homblende gabbro is
mainly composed of hornblende, plagioclase and minor
amount of quartz with or without clinopyroxene. Secon-
dary minerals are actinolite, chlorite, cpidote, zoisite and
Sﬂif:ite. Plagioclase feldspar occurs as subhedral pris-
matic crystals (6 mm) ranging from labradorite (o andesine.
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[Lis occasionally altered (o sericite, epidote and zoisite
Augite is partly replaced by chlorite. Hornblende is
present as medium grained anhedral twinned crystals
(upto 4 mm), which contain minute inclusions of plagio-
clase, apatite and magnetite. In the hornblende gabbro,
quartz occurs as anhedral interstitial grains of about
2 mm indiameter. Sphene forms shapeless grains between
different mineral phases.

The diorite consists predominantly of andesine, horn-

blende, biotite and quartz with minor amounts of K-feld-

spar. Andesine forms subhedral crystals, which are partly

altered to sericite. Hornblende is nearly equal in amount

to biotitc, which occurs as dark brown flakes with pro-

nounced pleochroism. Quarlz crystals are medium-

grained, anhedral and slightly deformed. K-feldspar is
less abundant and occurs as anhedral interstitial grains.

Mineralogically, the monzodiorite is similar to the diorite,

but it is richer in K-feldspar and quartz. The fine-grained
mafic enclaves of the metagabbroic rocks have relatively
large proportion of hornblende, actinolite, pyroxenc
opaques and low proportion of plagioclase relative to
the metagabbros. Homblende is present as subhedral
laths (up to 0.3 mm in length). Augite is present as fine-
grained prisms enclosed in poikiloblastic grains of iron
oxides. Plagioclase feldspar occurs as subhedral to
anhedral prismatic crystals (An, ). It sometimes, has
calcic resorbed cores and twinned according to Carlsbad
law.

Tonalite-Granodiorite Suite (TGrS): The TGrS of Bir
Madi area consists essentially of plagioclase feldspar,
hornblende and biotite with subordinate amounts of
quartz. Plagioclase (An,, ) is the most abundant mineral
constituent. It usually forms euhedral to subhedral
prismatic crystals (up to 8 mm). The crystals are often
complexly zoned and twinned according to Carlsbad law.
Hornblende is present as subhedral prisms and laths.
Biotite occurs as flakes (3 mm) enclosing minute inclu-
sions of opaque minerals forming poikilitic texture. It
sometimes, occurs as fine-grained clusters. Quartz forms
anhedral grains (up to 5 mm) between the plagioclase
crystals.

The granodiorite is made up of plagioclase feldspar,
quartz, K-feldspar, biotite and hornblende. Plagioclase
(Any;s.55) is generally fresh, but altered crystals are occa-
sionally observed. Quartz occurs as large subhedral crys-
tals (5 mm), which commonly exhibit wavy extinction.
K-feldspar is represented by orthoclase and occasional
microcline. Orthoclase is present as large tabular crystals
(up to 8 mm across) or as small grains. Biotite is the domi-
nant mafic mineral in the granodiorite variety. It occurs as
separate flakes (up to 2 mm) or irregular aggregates.
Apatite, sphene, zircon and iron oxides are accessories.
Secondary minerals are actinolite, sericite, epidote and
chlorite. The mincralogical constituents of the gabbroic
xenoliths in the tonalite and granodiorite resemble to the
studied metagabbros. The amphibolite enclaves are
fine-grained and consist of hornblende and plagioclase
(Anyus) as essential components. Actinolite, chlorite,
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sericite and epidote are secondary minerals, Accessories

are quartz, biotite, sphene and iron oxides.

monzodiorite (Fig.2). These rocks have SiO, conter
ranging from 46 to 57w1%and a low K, 0/Na,0 (<0.4
ratio with a wide spectrum in MgO and CaO (Table

Geochemistry

Trace Elements: Based on the geochemical classifica-
tion of De La Roche et al. (1980), the GDC samples are
classified as olivine gabbro, gabbro, diorite and

The GDC shows variable contents of Cr, Ni, V, Baand
(Table 1). The concentration of Nb is considerably I
than those of Y and Zr (Table 1). Majorand trace eleme
show well-defined trends with increasing SiO,, dem
strated by decrease in Ca0O, Sr, Y and increase in N



(Fig. 3). Most of the GDC samples appear to be Fe-poor
rcl.‘m\c to MgO and are thus classified as tholeitic to
calc-alkaline (Fig. 4). The tholeitic geochemical affinity
for the early-crystallized gabbroic variety may be attribu-

Gabbroic xenolith

Granodiorite
Tonalite
Diorite

Gabbro

Fig.2.R. R, Discrimination diagram for chemical classifi-
cation of the examined rocks. (1) olivine gabbro (2) gabbro
norite (3) gabbro (4) monzogabbro (5) syeno-gabbro (6) alkali
pabbro (7) diorite (8) monzodiorite (9) tonalite (10) granodior-
;lL (11) granite and (12) 1lkali granite
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ted to fractionation of olivine and clinopyroxene before
emplacement, which enriches the residual melt in Fe
relative to Mg and produces a Fe-enriched tholeitic
affinity on the AFM diagram. The dioritic samples are
characterized by ALO /CaO+Na,0+K,O (A/CNK) molar
ratio less than one with a metaluminous character
(Fig. 5). Inthe Pl'llnlll\&.'I]\r\ﬂl]\!-noml."llZ{d‘pll];(dl gram,
the investigated gabbroic and dioritic rocks show high
contents of the large ion lithophile elements (Rb, Ba, Sr
and K) relative to Zr, Y and Ti (Fig. 6). Strong negative Nb
anomaly in the GDC is a characteristic feature of mantle
derived arc magmas (Pearce, 1983; Holm, 1985) due to
highly immobile character of this element during partial
melting processes (Mc Culloch and Gamble, 1991)

For the TGrS, the major oxides like AlLO,, CaO and Fe.O,
show negative correlation with SiO, but K,O increases
with increasing SiO, (Fig.3). The suite forms roughly
curvilinear arrays with relatively smooth Ba and Zr
variations in the Harker diagram. The SiO, is positively
correlated with Rb, Y and Zr and negatiy ely correlated
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Fig. 3. Harker variation diagrams for CDG and TGrs rocks. SiO, vs. some selected (a) major oxides and (b) trace
clements. Symbols as in Fig. 2.




with Srand Ba (Fig.3). The TGrS rocks definca coysuiu-
able calc-alkaline magmatic trend on the AFM diagram
(Fig 4). On the A/CNK versus SiO, diagrmp, llhc TGS is
mostly metaluminous with only two granodionite samples
oi‘sli{;luly peraluminous character (Fig.5). The non.ml-
ized multi-element patterns of the TGrS are charactenized
by a pronounced enrichment in the K,0. Ba, Rb, La, Ce
and Nd as well as marked depletion in Nb conlc.:nls
(Fig. 6). The significant depletion in Nb and the enrich-
ment in LILE is a striking feature indicative of subduc-
tion-related processes (Pearce. 1983). There is acompo-
sitional gap between the GDC and TGrS, which appears
in their SiO, contents from 570 63% (Table 1). Moreover,
the chemical variation trends of K,O. Sr, Ba, Rb. Y and
Zr of the GDC samples are not on the same trend as
the TGrS on the Harker plots (Fig. 3). In this regard,
the relationship between Fe,0, versus CaO and Cris
used to demonstrate the contrast in chemical compo-
sition of the GDC and TGrS (Fig. 7 a, b). Such varia-
tion in the geochemical behaviour may suggest that
the GDC and TGrS rocks arc not related to a single
magma type through fractional crystallization process.
The gabbroic xenoliths of the TGrS fall in the olivine
gabbro and resemble the investigated metagabbroic
rock types of the GDC (Fig. 2). This is also confirmed
by the average primitive mantle-normalized trace ele-
ment abundances, which indicate that the gabbroic
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Ceenetiec Environment

Discrimination dingrams used in deciding the tectonic

environment of mafic plutonic rocks are commonly based
on well known voleanic suites, The binary relationship
Zr-Zx/Y s considered to be an effective diseriminator
between Island Arc Basalts (1AB) gencrated at sub
ducted convergent boundaricy, Mid-Ocean Ridge Basalts
(MORB), divergent occanic plates and Within Plate
Basalts (WPB), erupted in rifting continental setting
(Pearce and Norry, 1979). The GDC samples mainly plot
in the 1AB ficld (Fig. 8 a). Further, these samples were
plotted on the TiO, versus FeO/MgO diagram of Glassely
(1974), where lhuy fall exclugively m the island arc ficld
(Fig. 8 b). The GDC rocks are of tholeitic to cale-alkaline
character and have a significant wide range in K/IZb
ratio (Table 1) suggesting that these rocks represent a
gabbroid magma emplaced into a thick immature island
arc crust (K/Rb=300), Jelinek and Dudek (1997),

Many workers have tried to achieve a genetic classifica-
tion of granitoid rocks based on petrological and
geochemical parameters, where the granitoid rocks are
classified into [, S, A, and M-types (White, 1979; White
and Chappell, 1983; Whalen ctal., 1987). I-type granites
are penerated in cordilleran subduction and post-oro-
genic uplift regimes, S-type granites are formed as a
result of continental collision (Pitcher, 1983), On the K,O-
Na,O diagram, the TGrS rocks have a Na,O/K, O ratio 1
and arc equivalent to I-type granites (Fig. 8 ¢). However,
the calc-alkaline affinity and metaluminous character,
absence to low normative corundum (< 1) and relatively
low Rb/Sr ratios (Table 1), suggest that this suite repre-
sents I-type granitoids of White and Chappell (1983).
Moreover, several schemes have been proposed for the
nomenclature of granitoids on the basis of their tectonic
environment (Pitcher, 1983; Brown et al., 1984; Maniar
and Piccoli, 1989; Rogers and Greenberg, 1990; Pearce,
1996). With respeet (o tectonic environment, granitoid
rocks have been classified into ocean ridge granites, vol-
canic arc granites, syn-orogenic granites and within-plate
granites, The Rb versus (Nb -+ Y) diagram of Pearce et al,
(1984) is based mainly on one of a fluid-maobile element
(Rb)against two fluid-immobile elements, Nband Y. Based
on this relationship the TGrS occupies the volcanic are
seetor reflecting that they were formed through subduc-
tion-related processes (Fig. 8 d),
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