Assessment of Human Impact on Quaternary Aquifers of Rafah Area, NE Sinai, Egypt

MOHAMED EL ALFY* AND BRODER MERKEL**

- * Department of Geology, Mansoura University, 35516, Mansoura, Egypt
- **Institute of Hydrogeology, Gustav Zeuner Str. 12, D-09596, Freiberg, Germany (merkel@geo.tu-freiberg.de)

Abstract. Groundwater is endangered by agricultural activities, wastes disposal, aquifer over exploitation and seawater intrusion. The pollution risk is high, as the depth to the water table is shallow and the aquifers are highly permeable and have poor buffering capacity. Intensive farming activities have also put stress on groundwater quality due to intensive use of fertilizers and pesticides. As a result, concentrations of NO₃, SO₄²⁻ and PO₄⁻² are very high. Most of the house owners do not have access to public sewers, which poses another risk for the aquifers. More than 71.2% of the aerial distribution of nitrate concentration is greater than 44.29 mg/L, thus causing a serious problem. Static water level maps from 1983 to 2000 show the declining of the water level with time. The discharge from Quaternary aquifers exceeds the recharge rates after 1988 resulting in both upward leakage of the deeper high saline water and seawater intrusion. Factor analyses were used to define the factors that affect the groundwater quality. Dissolution and deposition of several minerals, evaporation from the groundwater, human impact on the aquifers, cation exchange, mixing between different waters and rainfall recharge were identified as the main factors impacting the ground waters.

Introduction

The study area is located in the north eastern part of Sinai Peninsula and covers about 152 km². The area extends between latitudes 31°11' 08'- 31°18'17"N and longitudes 34° 04'08'-34° 16'38" E (Fig. 1). It is bordered in the north by the Mediterranean Sea, to the east by the international border between Egypt and Palestine and in the south by central Sinai Peninsula. The annual rainfall varies between 266 mm/y at El Sheikh Zeweid and 303.8 mm/y at Rafah. Environmental impact assessment studies are aimed at identifying and predicting the effect on the environment and man's health. These studies will also leave impact on legislative proposals, policies, projects, operational procedures, interpretation and dissemination of information about the impacts (Munn, 1979). The study area is characterized by its shallow Quaternary aquifers, which are most vulnerable to pollution. These coastal aquifers recharged by rainfall are in direct contact with pollution sources and marine (saline) impact.

The purpose of this study was to evaluate the pollution of the groundwater. In this regard, a total of 26 groundwater samples were collected during two different periods (October, 1999 and April, 2000) and investigated for major, minor and trace elements (Table 1). Different methods for determining individual elements were used such as titration (HCO₃ and CO₃), IC (Na, K, Ca, Mg, Cl, SO₄ and NO₃), ICP-MS (metals and rare earth elements) and Spectrophotometric (PO₄). A Geographic Information System tool (GIS) was used to construct maps. In particular TNT-MIPS form Microimages inc, USA was used, which is a complex GIS software, which can display layers (Raster, Vector, CAD, TIN, and

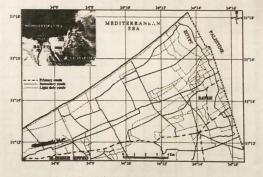


Fig.1. Location map of the study area

Database) in different coordinates and projections in one window without previous recalculation (Microimages, 2004).

Hydrogeology

According to the stratigraphic position, the permeability and storage capacity, three major aquifers can be distinguished: Sand dunes (Holocene), old beach (Upper Pleistocene) and calcareous sandstone (Lower Pleistocene). The Quaternary aquifers are extended to the east and west outside the study area. In the north, they are bounded by the Mediterranean Sea, and in the south, Tertiary rocks are cropping out or coming close to the surface. The shallow aquifer is formed by sand dunes overlying clayey sand. The second aquifer is built up by sand and gravel (old beach) and the third one by calcareous sandstone (Kurkar aquifer) separated by a silty clay unit (Fig. 2).

Table 1. Chemical analyses of the groundwater of Sand dune and Old beach aquifers and Kurkar aquifer, Rafah area.

0	1/011	1	10	9 5	2 :	7 ;	77	77	4 1	4.9	5.7	2.6	00	33	3	0.0	2 5	3	2 12	3.3	00	47	8.6	12	9.4	12	1=	0.0	
F			200	SI MARK	-		100	200	<0.5	<0.5	0.55	<0.5	<0.5	200	201	201	170		500	1 04	50>	0.69	<0,5	<0.5	<0.5	0.83	-	-	15/13
Pb 7		-	<050>					200	and interested		0.56	0.52	<0.5	AND STREET, STATE		Marin Services	160		5 50	0.50	0.79	<0.5		<0.5	-	< 0.5		> 06.0	12/50
-	ug/L us		< 0.4 <	707	Andread Service	704	100	ALC: NAME:		<0,4	<0,4	<0,4	<0.4		<04				<0.4	distribution !		<0,4	<0,4	<0,4	< 0,4	< 0,4	< 0.4 <	<0.4 0.	<0.4 <0.5 <0.5
U. 2	/L 119		V 1 V	-				-		<1>	1.1	< I>	<1 >		1	-			<1	-	1	1.5		<1 >	\ \ \	× 1 ×	×1 ×		4
Hg	Lug		-	-	-	+-	+	-	-	77	125	162	150	184	-	-	-		183	114	-	82	77	39	16	44	> 65	7 5	4
Ba	L ug		166	-	-	\vdash	+	-	-		<5 1	<5 1	<5 1	<\$ 1	-	-			<5 1	< 5	<5	<.5	<\$	<5	<.5	<5 4	-	20 40	-
20	HB/L HB/L HB/L HB/L		5 < 5	-	-	-	+	+-	-	5 <5	-	_			-	-	-			-		-	-	-	-	-	8 < 5	\$ 5	4
Sr			1525	2740	7114	3685	2280	1798	1306	1615	1204	1372	1150	1820	-	-	2885	1	5760	7274	11639	7438	1512	2714	2287	1017	2498	3573	
Se	µg/L		4	19	50	52	21	43	55	67	33	9	39	57	56	30	17	1	90	34	148	67	20	88	103	55	133	88	
As	µg/L		5.8	6.4	25	16	< 5	17	91	91	29	17	25	=	24	8.4	13	1	39	5	4	3	25	23	36	22	23	29	
Zn	µg/L µg/L		<5	< 5	<5	8.9	20	8.9	<5	13	9.1	15	24	<5	7.4	29	35		73	4	38	51	24	-	8.7	9.1	=	6.7	
7	µg/L		6.6	5.3	52	16	7.7	13	8.9	14	26	9.4	7.5	8.7	20	<\$	<5		37	9	46	32	6	30	35	6.3	26	17	
ž	ug/L		7.9	15	=	6.7	8.7	< 5	5.9	<5	8.4	<5	< 5	5.8	<5	11	15		5.5	12	0.9	61	S.	< 2 2	<5	× S	<>>	< 5	
3	µg/l.	S	× 55	<5	< 5	<5	< 5	<5	<.5	<5>	< S >	<5	<5	< 5	<5	<5	<\$		<5	<5	<5	<\$	<5	CV .	V V	C>	< > × ×	< > >	
Mn	ug/L µg/L	uifer	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25		<25	<25	<25	<25	57 5	9	\$ 52.5	67.	575	<25	
5	µg/L	ch aq	39	<25	<25	74	29	95	90	139	112	47	62	40	102	<25	29		21	<25	33	<252 :: <25	157	101	200	100	871	231	
>	ug/L	d bear	21	12	6.6	21	17	21	4	24	43	26	33	21	4	15	7 <50 21 Kurbar 621 5		34	91	23	3 5	3 6	2,0	7 -	33	20	34	
7	Hg/L Hg/L	d Ole	<50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	<50	< 50	450	Nai o	200	200	050	000	2000	V 50	0 × ×	05 >	< 50	< 50	
Be	µg/L	ne an	< 5	< 5	<5	<5	< 5	< 5	<5>	<5×	<5	<5	<5	<>	<5×	<5	\$5 Km	To the second		C	2 3	7 5	\$ 5	< × ×	<5	3	< 5	< 5	
PO4	mg/L	Sand dune and Old beach aquifers	0.07	2.75	90.0	0.05	0.07	90.0	0.07	0.04	0.00	0.04	0.04	0.07	0.05	0.05	90.0	800	200	0.0	0 07	0.03	0.05	90.0	80.0	0.10	0.03	90.0	
НСОЗ	mg/L	Sar	193	161	156	147	202	211		277	+			+			130	08	1			+		226		275	225	401	
SO4	mg/L 1		48	144	217	230	104	160		-	+	-	+	+	+	+	29	530	-	-	+	-	675	910	356	785	380	699	
NO3	mg/L n		122	202	191	174 2	402	150		-	1 5	+	+	+		-	114	18 5	-	-	-	73 3	73 6	37 9	162 3	46 7	94	18	
2 5	Mg/L m		179	459 2	800	440	176 4	280		320	+		+	+	+	-	-	-	-	-					-		910	839 8	
0	-1		103							-	-	-	-	+	459	+	-	0 830	9 1040			879	5 992	1200	0 736	0 1160	-	-	
MB	mg/L mg/	-	29 1	63 146	95 240	27 130	7 155			2 63	-			-	-	-	1	5 170	9 289			49	98	90	100	96	120	5 73	
EZ EZ	mg/L m	-	79 2	266 6			8 57			3 6			-	-	-		-	105	139		185	51	68	08	46	86 0	0 92	1 56	
×	mg/L m	1	53.00 7	-	30 355	0 290	00 128		0 159		Delivers of	Section 1	10000000	-			1000	470	264	811	870	869	086	1150	757	1080	650	100	
STATE OF THE PARTY OF	/L m	1		19.70	2034 10.30	0 2.60		STATE OF THE PERSON	09.1		Single-	Section.	-		and the last of	-		2.00	9.40	3678 13.40	25.00	20.30		2.80		2.10	2.90	2943 9.70	
F	cm mg	+	908	1491	100 March				1878		657		ANTENNAME OF THE PERSONS ASSESSMENT	1459	655	842		2224	2448	3678	4323	2297	3219	3709		3537	-		
SE	mv µS/cm mg/L	1	847	1940	200		SE 19	SER BETT	2280	1680	1033	1225	1006	2320	801	1251		3400	3730	4860	5570	3400	4690	4760	3300	2200	3770	2030	
Distriction from	MV	-	18	193		174	7.96 212		170		172	174	218	169	194	205	1	DESCRIPTION OF REAL PROPERTY.	2000H 32	228	STREET, SQU		STATE STATE		100	7/1		-	
띰	-	1	7.83	8.10			-		8,33	8.07	8,09	8.09	7.93	8.18	7.01	727	I	7.96	7.81 164	7.90	7.82		8.40		CO SECURIO	0000	8.45		
Well			11,-10	121	1212	1221	Pzl	9-01	16-31	16-34	16-41	16-52	16-67	16-73	16-80	16-143	-				1269	86-91	16-174	16-175 0 44	16-138		16-153 8.45 160		
					200											=1	1	-1		-1	-L	1 -	1=	L	1=	1=	1=		

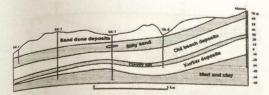


Fig.2. Hydrogeologic cross section from southeast to northwest in Rafah area.

Groundwater fluctuations of the Quaternary aquifers are affected by rainfall, excessive pumping and evapotranspiration especially in the north (JICA, 1992), where the water table is very close to the ground surface. Except the lower clay layer of the Tertiary (base of the aquifers) most of the clay and shale layers form lenses with different thicknesses and extensions. Measurements of groundwater level indicate that there are no differences in the water levels of the three aquifers, reflecting that these aquifers are hydraulically connected. Depth to groundwater encountered in these aquifers ranges between <1 m in the north (along the sea coast) and 70 m in the southeastern part. Downward leakage is expected to take place depending upon the thickness and the vertical hydraulic conductivity of the clayey beds or lenses separating these three aquifers. According to JICA (1992) groundwater level indicates that these aquifers are unconfined (sand dune) to leaky and confined (old beach and Kurkar).

Two regional contour line maps (referenced to sea level) were prepared for the aquifers for the year 1983 and 2000 by means of Kriging based on avariogram analysis (Fig. 3). Assuming low abstraction rates before 1983, the static water level is considered to represent the steady state conditions of the aquifers (Fig. 4).

The piezometric level slopes to the north and northwest directions from about 6.0 m (southeastern part) to <1 m (northern part) above sea level, along a uniform gradient between 0.06% and 0.13%. The constructed water level contour map in the year 2000 shows the general water flow from south to north. But there are local flow directions towards the pumped areas (Fig. 5). The water level varies between +4.4 m asl in the southern part, while the minimum values are 0.0 m asl in Rafah area. The hydraulic gradient varies between 0.04% and

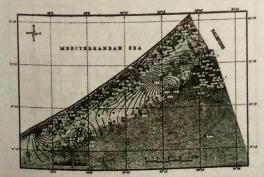


Fig.3. The variogram model fitted to the static water level data at 1983.

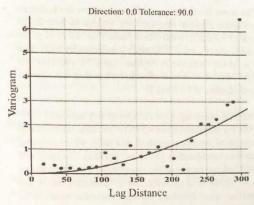


Fig. 4. Iso-potentiometric contour map of Quaternary aquifer in the year 1983.

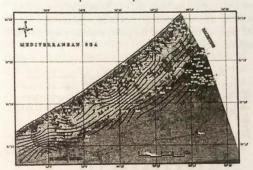


Fig.5. Contour map of Quaternary aquifers in the year 2000.

0.14%. Several local cones of depression in water level in Rafah and El Sheikh Zeweid represent the pumped areas.

Abstraction Rate

Groundwater of the Quaternary aquifers in North Sinai has been used for thousands of years by means of springs and dug wells (Fig. 6). Drilled wells were rarely found only in the vicinity of settlements to meet the need for drinking water in villages (Fig. 7). Abstraction rate was relatively low until 1982 and after 1982, it has grown dramatically, with the increasing population of the Rafah and El Sheikh Zeweid and the expansion of farmland and artificial irrigation (Fig. 8).

Disturbance of the Water Balance

Due to over-pumping of the Quaternary aquifers in the study area, mixing between the deeply saline groundwater of Pre-quaternary aquifers and the Sand dune and Kurkar groundwaters, which are relatively shallow and fresh (El Alfy, 2003), occurred. Over-pumping has a direct impact on the hydrodynamic interface between the seawater and fresh groundwater by lowering the natural head of the shallow aquifer below the seawater head. Fig. (9) shows the declining static water level between 1983 and 2000.

The water level declines with time, where the hydraulic gradients become non-uniform, especially near Rafah and El Sheikh Zeweid cities. More than 84.23 % of the whole study area (75.70 km²) is affected by more than 1 m of the static water decline (Table 2), while the rest (15.77 %) of the area is affected by less than 1 m of water level decline (14.17 km²).

The over pumping from the Quaternary aquifers (1983-2000) is calculated to be 6.59 x10⁶ m³. Also the calibrated numerical modeling method was used, where pumping rate was calculated as 18032 m³/d (1983). The calibrated total leakage on top of the main model layer is estimated to be 12040 m³/d (El Alfy, 2003). Boundary inflow and outflow were obtained through Dirichlet nodes to be 35382 m³/d. In the year 2000, pumping rate was calculated to be 74000 m³/d (Fig. 9). This reflects that the discharge rates exceed the recharge rates of these aquifers resulting in some critical problems such as upward leakage from the high saline water of the pre-Quaternary aquifers as well as seawater intrusion.

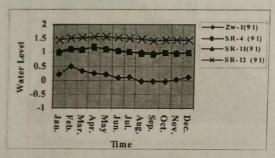


Fig.6. Groundwater hydrographs of monitored boreholes in 1991 (modified after Mekhemer, 1994).

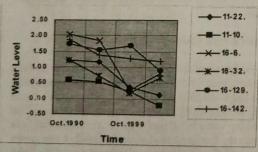


Fig.7.Groundwater hydrographs of monitored boreholes between 1990 and 2000.

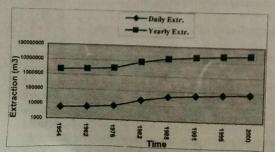


Fig. 8. Groundwater abstraction rate in the study area (modified after RIWR, 1993).

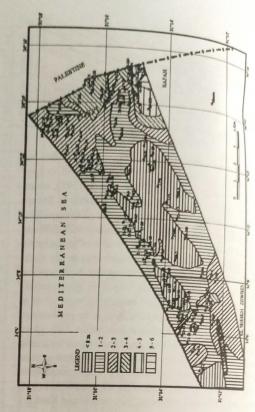


Fig. 9. Water level declines zonation map of Quaternary aquifer between 1983 and 2000.

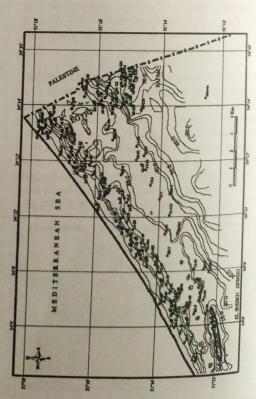


Fig. 10. Depth to water contour map of the Quaternary aquifer.

Table 2. Water level declines of Quaternary aquifer between 1983 and 2000.

Static water level declines	Area (km²)	Area %	Cumulative area %	Volume (km³)
<1 m	14.17	15.77	15.77	7,085,000
1-2 m	43.80	48.74	64.51	65,700,000
2-3 m	22.80	25.37	89.88	57,000,000
3-4 m	6.51	7.24	97.12	22,785,000
4-5 m	2.15	2,39	99.51	9,675,000
5-6 m	0.44	0.49	100.00	2,420,000
Total	89.87	100	100	164,665,000

Pollution Processes and Sources

Human and agricultural activities have affected the hydro-ecology of the study area in particular, where the depth to the water table is very shallow especially in the northern parts of the area and where the soil cover is represented by permeable sands resulting in high infiltration rates (Fig. 10). On the other hand, the aquifers are highly permeable and show poor geochemical buffering capacity. Due to relatively high rates of groundwater flow, the mean residence time of groundwater in the aquifer to attenuate pollutants is very limited. Soils and ground waters in the study area are endangered by agricultural activities, wastes disposal, over pumping of groundwater and seawater intrusion (Table 3).

Septic system and latrines are widely used to dispose the wastewater into the ground and open area defecation happens as well. Both are causing pollution of groundwater by means of organic (humic acids and pathogen microorganisms) and inorganic compounds (NH₄, nitrate and urea). This pollution is clearly observed in the area where depth to groundwater is less than 3 m. Most of the house owners in the study area do not have access to public sewers, but they have simple on-site waste treatment system. This system is poorly constructed and exposes the groundwater to a high risk. Since, the

Quaternary aquifers are composed of sand and gravel plumes of contaminated groundwater develop as the effluent of wastewater discharge into the groundwater. Plumes are characterized by high concentrations of K^+ , Cl^- , PO_4^{-2} and NO_3^- , which are mainly derived from the waste effluent (Table 4). There are some ions such as Cl^- which are not degraded or attenuated as they reach the water table. On the other hand, there are ions such as PO_4^{-2} -slowed or degraded because they are absorbed by soil.

Nitrate in Groundwater of the Quaternary Aquifers

Quality of water is the most important parameter affecting the exploration and exploitation of the groundwater in the study area. Groundwater chemistry depends on the interaction of many hydrochemical, geochemical and biochemical processes, where the role of human activities impacts on groundwater quality due to intensive use of fertilizers and pesticides, can be indicated by increased concentrations of NO₃-, SO₄²⁻ and PO₄-2. The deterioration of the quality of ground water becomes obvious. Nitrate occurs naturally from precipitation due to NOx(g) in the atmosphere mainly produced by lightning, and through burning of fossil organics (oil, gas, coal), as a byproduct of farming activities and from human wastes. Nitrogen occurs in water as NO3-, NO2-NH3(g), N2O(g) NH4+, and in a variety of organic compounds (Hem, 1989). The input of nitrate by means of rainfall can be considerably high (18.5 mg/L) due to enrichment of rainwater concentrations by evaporation effects during groundwater recharge. It is calculated according to rainwater chemistry, where nitrate has average mean value of 3.14 mg/L, the average rainfall within the area is 275 mm/y and the mean recharge is 47 mm/y (Herut et al., 2000). Nitrate is the oxidized form of nitrogen in the nitrogen cycle and mobile nitrite and organic species are metastable compounds in aerated water, while ammonium as reduced species is strongly sorbed on clay mineral surfaces. The Quaternary aquifers

Table 3. Potential sources of pollutants, affected zones and the types of impacts

Pollution potential	Emitted pollutants	Affected ecological resources	Affected zones	Type of impact and pollution	Remarks
Agricultural activities	Organic and chemical fertilizers and irrigation with treated waste water	Soil and groundwater	Northern and southern parts of the study area	Chemical and organic pollution of groundwater, increasing soil salinity	NO ₃ in groundwater has very high values
Dug holes waste water	Organic matter, NO ₃ , K, Cl and SO ₄ ,	Groundwater	Rafah and El Sheikh Zeweid cities	Chemical and organic pollution of groundwater	Waste water infiltrated to aquifers
Over pumping of the	High saline water	Groundwater	El Sheikh Zeweid and Rafah area	Upward leakage of high saline water into aquifers	Upward leakage from Pre-Quaternary aquifers
aquifer Seawater intrusion	Sea water	Groundwater	Northern part of the study area	Encroachment of seawater into the aquifers	Balance disturbance between recharge and discharge

Table 4. Concentrations of NO⁻³ and PO₄⁻² in the groundwater of Quaternary aquifers.

Poliution	Natural level	Minimum	Maximum	Average	Source
	Matural level	Militari		142.37	Human and animals wastes
NO ₃	<15.00 mg/l	31.00	463.00	142.37	riuman and animals wastes
100-7			2.76	0.16	Sewage, animal manure and fertilizers
PO ₄ -2	0.005-0.1 mg/l	0.03	2.75	0.10	oo mga ammat mangio and formition

are the main source of groundwater, which is used for domestic and agricultural purposes. Geologically these aquifers are composed of sand, gravel and calcareous sandstone characterized by high permeabilities. They are underlain by Tertiary marls and limestones. The vulnerability of the aquifers is apparent due to high permeability and hydraulic conductivity of the aquifers and absence of impermeable layers on top of them, as well as unwise use of nitrate fertilizers and pesticides (Fig. 11). Nitrate represents one of the main serious water pollution problems in the study area, where the major anthropogenic sources of nitrate are fertilizers, latrines and high risk septic tank drainage, dairy and poultry farming and the leaching of soil as a result of the application of irrigation water.

According to the classification of nitrate concentration of Madison and Brunett (1985), the interpretations of nitrate range concentrations are estimated in the study area (Table 5). More than 71.16% of the area has nitrate concentration values (> 44.29 mg/L) representing a serious problem (Fig. 12).

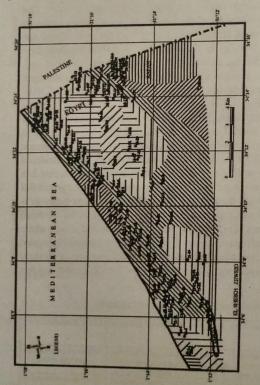


Fig.11. Hydraulic conductivity zonation map of the Quaternary aquifers

In the southern and eastern parts, nitrate concentration In the southern the less than 10 mg/L. This low level of is recorded to be less than 10 mg/L. This low level of is recorded to be concentration refers to minor agricultural activities and concentration refers to minor agricultural activities and relatively deep occurrence of the water table. In the northwest part of the area there is a huge increase of northwest part to northwest pa nitrate concentration water table (<10 m) and interest to the very shallow water table (<10 m) and interest to the very shallow water table (<10 m) and interest to the very shallow water table (<10 m) and interest to the very shallow water table (<10 m) and interest to the very shallow water table (<10 m) and interest to the very shallow water table (<10 m) and interest to the very shallow water table (<10 m) and interest to the very shallow water table (<10 m) and interest to the very shallow water table (<10 m) and interest to the very shallow water table (<10 m) and interest to the very shallow water table (<10 m) and interest to the very shallow water table (<10 m) and interest to the very shallow water table (<10 m) and interest to the very shallow water table (<10 m) and interest to the very shallow water table (<10 m) and interest to the very shallow water table (<10 m) and interest to the very shallow water table (<10 m) and interest table (<10 agricultural activities. Nitrogen fertilizers are very frequently applied to crops as well as pesticides. The high porosity and permeability of Quaternary aquifers and the absence of thick impermeable rocks is responsible for the presence of high nitrate levels in groundwater, where a viable pathway exists from the surface (nitrate sources) to the groundwater. Concentrations exceeding 70 mg/l nitrate in drinking water may likely cause deadly Methemoglobinemia (blue baby syndrome) for children at an age less than 2 years (Hem, 1989). In the east and northeast of the area, the nitrate concentrations are higher than 250mg/L. Compared with the western part of the area, there are relatively few agricultural activities and the water table is relatively deeper in particular in the southeast (>70 m). This high concentration may be

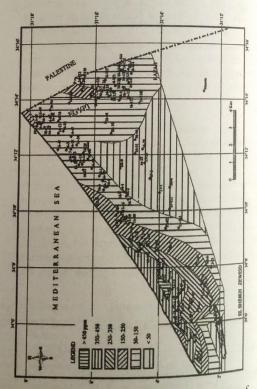


Fig.12. Areal distribution of nitrate concentrations of Quaternary aquifer during April 2000.

Table 5. Nitrate concentration in groundwater of the Quaternay aquifers.

Zone	Nitrate Concentration	Area (Km)	Area %							
1	< 0.89 mg/l		ALCE /S	Remarks						
		0	0	Assumed to represent natural background concentrations.						
11	0.89- 13.29 mg/l	16.19	18.15	Transitional; concentrations that may or may not represent human influence.						
111	13.29- 44.29 mg/l	9.54	10.69							
v	>44.29 mg/l	63,49		May indicate elevated concentrations resulting from human activities						
1		05,49	71.16	Exceeds maximum concentration for National Interim Primary Drinking Regulations.						

referred to the pollution of groundwater in Gaza strip in Palestine, where nitrate concentrations are as high as 150 mg/L in north Gaza and up to 350 mg/L in the Khan Younis area, and peaking with 600 mg/L in Khan Younis Refugee Camp.

Factor Analysis

Factor analyses were used to define the factors that have impact on the groundwater quality. R-mode factor analysis (Dalton and Upchurch, 1978; Al Yamany, et al, 1994) was carried out with the software STATISTICA for the entire set of data, including major, minor and trace chemical constituents. Factors were rotated using Varimax method.

Sand Dune and Old Beach Aquifers

Factor analysis for data from sand dune and old beach aquifers used 15 cases and 15 variables. There are four main factors affecting the hydrochemical formation of the groundwater of sand dune and old beach aquifers representing a cumulative total variance 83.47 %, with

Table 6. Factor analysis loadings and Eignevalues of sand dune-old beach aquifers.

	Factor 1	Factor 2	Factor 3	Factor 4
-11	0.12	0.20	0.84	-0.05
рН	0.12	0.35	0.40	0.22
TDS		-0.85	0.14	0.09
K ⁺	0.11		0.56	0.08
Na ⁺	0.42	0.67	0.04	0.26
Mg ⁺²	0.87	-0.02	0.00	0.17
Ca ⁺²	0.93	-0.19		0.02
Cl.	0.81	0.42	0.33	0.02
NO ₃	0.39	-0.47	-0.26	
SO ₄ 2·	0.49	0.62	0.44	0.09
HCO ₃	-0.37	0.14	0.73	0.18
PO4-2	0.16	-0.11	0.20	0.77
Zn ⁺²	-0.37	0.21	-0.81	0.13
As*3	0.09	0.78	0.16	-0.45
Se*2	-0.06	0.11	0.60	-0.69
Sr'2	0.97	0.03	-0.13	-0.10
Expl.Var	4.75	2.85	3.19	1.74
Prp.Totl	0.32	0.19	0.21	0.12
Eigenval	5.74	3.72	1.88	1.19
Cumul. Eigenval %	5.74	9.46	11.33	12.52
Total Variance %	38.26	24.79	12.50	7.93
Cumul. %	38.26	63.04	75.54	83.47

the smallest Eigenvalue being 1.19 and cumulative Eigenvalues of 12.52 (Table 6).

The first factor accounts 38.26 % of the total variance and 5.74 of the Eigenvalues. This factor shows high loadings with Sr²⁺, Ca²⁺, Mg²⁺, Cl⁻, and TDS (0.97, 0.93, 0.97, 0.81 and 0.80 respectively) and moderate loadings with SO₄²⁻ and Na⁺ (0.49 and 0.42 respectively). This factor reflects two main processes affecting the water chemistry. The first one is the role of dissolution of several minerals, in particular gypsum (CaSO₄.2H₂O), anhydrite (CaSO₄), strontianite (SrCO₃), halite (NaCl) and in some localities calcite (CaCO₃), aragonite (CaCO₃) and dolomite (CaMg(CO₃)₂), where they show a negative saturation index calculated with PHREEQC software (Parkurst and Appelo, 2001), (Table 7).

The second process is the evaporation of the groundwater, where the water table is very shallow (Fig. 10). These two processes (dissolution and evaporation) cause the increasing of the total dissolved salts (TDS) of the groundwater. The second factor accounts for 24.79 % of the total variance and 3.72 of the Eigenvalue. This factor has high loadings with K+, As+5, Na+, SO4-2 (-0.85, 0.78, 0.67 and 0.62) and moderate loadings with NO3 and Cl (-0.47 and 0.42). This factor reflects human impact on the aquifer, where it shows the role of uncontrolled pesticides, which are used in agriculture. The third factor accounts 12.50 % of the total variance and 1.88 of the Eigenvalue, this factor has high loadings with pH, Zn+2, HCO₃-, Se⁺² (0.84, -0.81, 0.73, 0.60) and moderate loadings with Na+ and SO4-2 (0.56 and 0.44). This factor corresponds to two processes, the first one is the role of rainfall recharge and this can be evidenced by the high loading of HCO3-, which occurred under alkaline conditions. The second one is the use of sulfate fertilizers, where it has remarkable high loading with Zn+2, Se+2 and Na⁺. The fourth factor accounts 7.93 % of the total variance and 1.19 of the Eigenvalue, having high loadings with PO₄⁻² and Se⁺² (0.77, -0.69), and moderately loading with NO₃ and As⁺⁵ (0.49 and -0.45). This factor reflects the role of phosphate and nitrate fertilizers, where these fertilizers are used as the soil is relatively poor in these elements.

Kurkar Aquifer

Factor analysis of data from Kurkar aquifer was performed using 11 cases and 11 variables. Four main factors control

Table 7. Saturation indices (SI) of different mineral phases of Sand dune and Old beach aquifer.

										16-34	16-41	16-52	16-67	16-73	16-80	16-143	Mean
Mineral	Chemical	11-10	12-1	12-12	12-21	Pz-1	16-6	16-14	16-31	10-34			200	0.74	-0.27	-0.39	0.55
	Composition					0.04	0.90	0.64	0.92	0.61	0.59	0.59	0.54	0.74	-0.21	-0.37	0.55
Calcite	CaCO ₃	0.58	0.89	0.88	0.80	0.84	0.90			0.16	0.44	0.45	0.40	0.60	-0.41	-0.54	0.42
Aragonite	CaCO	0.44	0.74	0.74	0.65	0.70	0.76	0.50	0.78	0.46	0,44	0.45				0.60	10.07
	Cacos	0.44	0.74			Carried Street, or other Desired		12.13	19.96	12.24	11.77	12.03	11.68	15.46	-0.71	-0.60	10.87
Dolomite	CaMg(CO ₃) ₂	0.96	17.60	17.10	12.56	15.97	16.94	12.15	19.90	-	-0.65	-0.67	-0.59	-0.61	-16.68	-12.44	-2.34
Strontianite	SrCO	0.70	0.20	-0.19	-0.30	-0.54	-0.43	-0.63	-0.21	-0.70	-		-		-35.00	-34.11	-24.75
	SrcO ₃	-0.79	-0.38	-0.19	-0.50	26.11	24 15	24.57	-21.48	-25.36	-24.83	-24.45	-25.56	-24.01	-33.00	-34.11	
Witherite	BaCO ₃	-26.79	-25.45	-27.77	-20.11	-20.11	-24.10	17.74	16.07	-14.17	-21.45	-18.74	-19.49	-14.78	-19.97	-20.21	-15.31
Gypsum	CaSO ₄ .2H ₂ O	19 60	-14 03	-11.26	-12.12	-14.75	-14.02	-17.74	-10.77					1000	22.17	-22.41	-17.36
Olbadili	C8504.21720	-10.07	14.05			16.06	16 22	19.94	-19.16	-16.37	-23.65	-20.94	-21.69	-16.97	-22.17	-22.41	-17.50
Anhydrite	CaSO ₄	-20.89	-16.23	-13.45	-14.31	-10.95	-10.22		-19.16 -15.68	-14.66	-21.19	-18.76	-18.20	-15.62	-21.37	-16.12	-14.44
Celestite	0.00	10.05	14.13	-0.94	-10.43	-15.93	-14.72	-17.81	-13.08	-14.00	47.117					20.56	4.01
Colestite	\$rSO ₄	-19.83	-1-1-1	0.77			14 50	0.74	0.37	0.25	0.16	-0.13	0.18	0.32	-35.74	-32.55	4.01
Hydroxyapatite	Car(PO) OH	0.59	64.59	17.29	15.10	14.21	14.37	10.74			L.	Aurenton					

the hydrochemistry of the groundwater of the Kurkar aquifer (Table 8).

Table 8. Factor analysis loadings and Eignevalues of Kurkar aquifer.

		-	Factor 3	Factor 4
	Factor 1	Factor 2	-0,48	0,06
	-0,79	0,15	0,62	0,67
Ph	-0,16	-0,04	0,23	-0,09
К*	-0,70	0,62	0,76	-0,06
Na*	0,59	0,11	0,72	-0,05
Mg ⁺² Ca ⁺²	0,62	-0,10	0,91	-0,10
C9.	0,11	0,18		0,00
CI.	0,35	-0,49	0,72	-0,13
SO ₄ ^N	-0,23	0,89	-0,12	0,09
HCO ₃	-0,89	-0,12	-0,22	-0,92
PO ₄ ²	0,01	0,07	0,22	0,02
AS*5	0,23	0,84	0,08	1,34
	2,92	2,21	3,24	0,12
Expl.Var	0,27	0,20	0,29	AMADONIS
Prp.Totl	4,81	2,31	1,55	1,04
Eigenval	4.81	7,12	8,67	9,71
Cumul. Eigenval %	43,74	20,98	14,10	9,44
Total Variance %	43,74	64,72	78,82	88,26

These four factors have a cumulative total variance of 88.26%, while the smallest Eigenvalue is 1.04 and the cumulative Eigenvalue being 9.71. The first factor accounts 43.74% of the total variance and 4.81 of the Eigenvalue. It has high loading with HCO₃⁻, pH, Na⁺, Ca⁺² and Mg⁺² (-0.89, -0.79, -0.70, 0.62 and 0.59). This factor reflects two main processes, the first one is the deposition of calcite, aragonite and dolomite with the increase of flow distance and depth from recharge area, as these minerals have positive saturation indices (Table 9).

The second process is cation exchange between Ca+2 and Mg+2 with Na+ on the intercalated clays of the aquifer. The second factor accounts for 20.98 % of the total variance and 2.31 of the Eigenvalue. It has high loadings with SO₄⁻², As+5 and Na+ (0.89, 0.84 and 0.62) and moderate loading with NO3. This factor reflects the human impact on groundwater, where it shows the pollution with pesticides and nitrate fertilizers as well as wastewater (personal communication with farmers). The third factor accounts for 14.10% of the total variance and 1.55% of the Eigenvalue, it has high loadings with Cl-, Mg+2, Ca+2, NO3- and K+ (0.91, 0.76, 0.72, 0,72 and 0.62) and moderate loading with pH (-0.48). This factor shows the mixing between different waters (sand dune water, Kurkar water, seawater and Pre-quaternary water). This mixing process will increase the salinity and decrease pH of the mixed water resulting in the increase of the mobility of heavy metals.

On the other hand, NO₃⁻ increases because of the increase of dissolved O₂, where nitrification reactions are enhanced to produce NO₃⁻ (the stable form of nitrates). The fourth factor accounts 9.44 % of the total variance and 1.04 of the Eigenvalue. It has high loadings with PO₄⁻² and K³ (-0.92, 0.67). This factor reflects the human impact on groundwater. The role of phosphate and potassium fertilizers can be noticed clearly, where fertilizers are used, as the soil is relatively poor with respect to these elements.

Summary and Conclusions

The area of study is located at the northern part of Sinai Peninsula (Egypt). It is thought to be a promising area for agricultural, industrial and tourism projects, but the present water supplies are insufficient to meet the expected huge increase in water demands. The sustainable development is retarded by many environmental problems such as over pumping, pollution of the limited water resources and seawater intrusion.

The potential pollution sources of groundwater in the study area are represented by agricultural activities. wastes disposal, over pumping of groundwater and seawater intrusion. The depth to the water table is very shallow and the aquifers are very permeable and offer only poor chemical buffering capacity. Intensive farming activities put stress on groundwater quality due to intensive use of fertilizers and pesticides resulting in high NO3; SO₄², and PO₄⁻² concentrations. Most of the house owners do not have access to public sewers. Static water level maps from 1983 and 2000 show that the water level is declining with time. The groundwater extracted from the Quaternary aquifers (1983-2000) is calculated by means of water table decline and the average storage coefficient to be 6.59 x106 m3. More than 71.2% of the areal distribution of nitrate concentration greater than 44.29 mg/L represents a serious problem. This refers to the very shallow water table and high agricultural activities.

Factor analyses were used to define the factors that have impact on the groundwater quality.

Dissolution of several minerals, evaporation of the groundwater, human impact on the aquifers (nitrate, sulfate fertilizers and pesticides) and rainfall recharge are the main factors affecting sand dune and old beach aquifers. While Kurkar aquifer is affected by different factors deposition of calcite and aragonite, cation

Table 9. Saturation indices (SI) of different mineral phases of Kurkar aquifers.

Mineral	Chem. Comp	11000					rai pua	JUG OI	T. F. ST. T. F.	-		153 Mes
Anhydrite	CaSO ₄	12-26	12-32	12-52	12-69	16-98	16-114	16-124	16-125	16-138	16-150	10-133
Aragonite	CaCOa	-11.29	-15.21	-0.84	-12.44	-17.24	-13.70	-12.71	-14.95	-13.17	-14.08	-14.14
Calcite	CaCO	0.03	0.44	0.67	0.66	0.75	0.72	0.78	11.64	0.65	0.63	0.90
Dolomite	CaMg(CO ₃) ₂	0.18	0.58	0.81	0.81	0.89	0.86	Annual Control of the	THE REAL PROPERTY.	0.79	0.78	11.04
Gypsum	CaSO ₄ .2H ₂ O	0.49	11.97	16.98	16.75	21.54	20.89	0.92	13.08	-	1791	24.45
Rhodochrosite	MnCO3	-0.91	-13.02	-0.63	-10.26	-15.05	Shipper and the same of the sa	21.92	26.35	19.64	-11.88	-12.55 -5.0
Strontianite	SrCO	-14.60	-13.16	-11.13	-12.24		-11.52	-10.52	-12.76	-10.99	-0.86	
Celestite	SrSO ₄	-0.84	-0.57	-0.12	-0.43	-0.59	-0.72	-0.69	-0.56	-0.77		-0.24 -0.3
lydroxyapatite	Cas(PO ₄)3OH	-0.66	-11.86	-0.30	-10.06	-0.16	-0.18	-0.21	-0.22	-0.31	-0.29	12.42 -0.1
	Al(OH)3	0.01	12.76	0.99		-12.92	-0.93	-0.93	-15.43	-0.94	-1,00	207
libbsite	Al(OH)3	0.80	0.67	0.57	13.23	-0.60	-0.09	10.22	20.43	0.82	-0.33	0.04 0.5
I(OH)3	MONS	-18.94	-20.17	-21.15	0.65	0.05	0.26	-0.01	0.05	0.25	0.40	-26.54 -21.2
		V. SPERMENT OF THE PARTY OF THE	Maria Carlo	L	-20,42	-26 37	24 20	22.00		0.4.41	22 92	W. C. Land

exchange, pollution with pesticides, potassium phosphate and nitrate fertilizers as well as wastewater and mixing between different waters.

References

- Dalton, M; Upchurch, S. (1978) Interpretation of hydrochemical facies by factor analyses. *Groundwater*, **16**(4), 228-233.
- Munn, E. (1979) Environmental Impact Assessment, 189; Printed by Unwin Brothers Ltd, Scientific Committee on Problems of the Environment (SCOPE).
- Madison, R; Brunet, J. (1985) Overview of the Occurrence of Nitrate in Ground Water of the United States, National Water Summary 1985— Hydrologic Events, Selected Water-Quality Trends and Ground-Water Resources. Water-Supply Paper 2275. Reston, Virginia: U.S. Geological Survey.
- Hem, J. (1989) Study and Interpretation of the Chemical Characteristics of Natural Water. U.S. Geological Survey Water-Supply Paper 2245. Washington, D.C. United States Government Printing Office.
- IICA (1992) North Sinai Groundwater Resources Study in the Arab Republic of Egypt. Final report. Submitted to the Research Institute for Water Resources. Ministry of Public Works and Water Resources, Cairo, Egypt.

- Research Institute of Water Resources (RIWR) (1993).

 Sinai Water Resources Study, Phase (2), final report,
 A.R.E., Ministry of Public Works and Water
 Resources.
- Mekhemer, H. (1994) Hydrogeological Conditions in El-Sheikh Zuwied and Rafah Area. M.Sc. Thesis, Fac., Sci., Assuit Univ., 111 p.
- Al Yamany, M; Bazuhair, A; Hussein, M. (1994) Interpretation of groundwater chemistry by factor analysis technique. JKAU. Earth Sci. 7, 89-100.
- Herut, B; Starinsky, A; Katz, A; Rosenfeld, D. (2000)
 Relationship between the acidity and chemical composition of rainwater and climatological conditions along a transition zone between large deserts and Mediterranean climate, Israel. Atmos. Environ., 34, 1281-1292.
- Parkurst; Appelo. (2001) User's Guide to PHREEQC (version 2) A Computer Program for Speciation, Batch-reaction, One-dimensional Transport, and Inverse Geochemical Calculations. U.S. Department of the Interior. U.S. Geological Survey, 312p.
- El Alfy, M. (2003) Environmental Impact of the Geomorphological and Hydrogeological Aspects of Rafah Area, North Sinai, Egypt. Ph. D. Thesis, Mansoura Univ., Fac. Sci., 216p.
- Microimages (2004) TNTMIPS reference manual version 6.9. http://www.microimages.com