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Abstract: Asian tectonism and exhumation are critical components to develop modern icehouse climate. In this study, 

stratigraphic sections of eight wells in the Mannar and Cauvery basins were considered. The author demonstrated that 

this local system records a wealth of information to understated regional and global paleoclimatic trends over the 

Cenozoic era. The lithostratigraphic framework has been generally characterized by deposition of carbonate-rich 

sediments since the Middle Cenozoic. Geological provenance of carbonate sediments had probably related to local 

sources from Sri Lankan and Indian land masses. The main controlling factor of carbonate burial is rather questionable. 

However, this carbonate burial has indicated the possible link to the Middle to Late Cenozoic global climatic transition. 

This major climatic shift was characterized by long-term reduction of atmospheric carbon dioxide concentration over 

the Cenozoic era. Consequently, this geological trend (carbonate burial) has a straightforward teleconnection to the 

global cooling towards the glaciated earth followed by the development of polar ice sheets that persist today. 

Keywords: Mannar Basin, Cauvery Basin, Sri Lanka, paleoclimate, carbonate burial, Cenozoic era. 

Introduction 

The Cenozoic era consists of three periods, i.e., the 

Paleogene (from 66.0 to 23.03Ma), Neogene (from 

23.03 to 2.58Ma) and Quaternary (from 2.58 Ma to the 

Recent), and seven epochs from the Paleocene to 

Holocene based on the International Stratigraphy Chart 

(Cohen et al, 2013). The  earth’s climate has 

undergone a significant and complex evolution during 

the Cenozoic era as a result of the topographic 

development of the oceanic Basins (e.g., passage 

opens), movement position of continents (e.g., plate 

reorganization/seafloor spreading and plate uplift) and 

earth’s orbital geometry (Kennett, 1977; Zachos et al., 

2001; Tripati et al., 2009; Ratnayake, 2016a). The 

global climate has thus drastically fluctuated from 

greenhouse (Early Cenozoic) to icehouse (late 

Cenozoic) states during the past ~66 Ma and marked 

several glaciations (e.g., Oi-1 and Mi-1 events). 

Chemical/physical weathering and erosion of 

carbonate and silicate rocks due to tectonic activities 

can also potentially influence the reduction of 

atmospheric carbon dioxide concentration and surface 

temperature (Volk, 1989; Raymo and Ruddiman, 1992; 

Gaillardet and Galy, 2008). However, some 

researchers argued this widely accepted mechanism 

with new geochemical data of the dissolved oceanic 

beryllium (
10

Be/
9
Be) isotopic ratio as a paleo 

weathering proxy (Goddéris, 2010; Willenbring and 

Blanckenburg, 2010). Consequently, tectonically 

uplifted South Asia has still considerable implications 

on the understanding of source rock weathering to the 

long-term global climatic transitions with respect to 

plate motion and orogeny (Raymo and Ruddiman, 

1992; France-Lanord and Derry, 1997; Willenbring 

and Blanckenburg, 2010). In contrast, several 

biogeochemical processes, such as precipitation of 

calcite by microorganism, corals and shelly animals 

control carbonate burial into the geological reservoirs. 

The cycle of carbonate burial also affects partial 

pressure of atmospheric carbon dioxide (pCO2) over 

geological time (Ridgwell and Zeebe, 2005). 

Therefore, geological strata provide wealthy records of 

chemical and physical interactions in the geosphere 

and biosphere as well as in the hydrosphere (e.g., 

Quade et al., 1989; Prell and Kutzbach, 1992; Pagani 

et al., 1999; Guo et al., 2002; Jia et al., 2003; 

Ratnayake, 2016 b). 

One of the best records of global Cenozoic climatic 

variations comes from the central Indian Ocean. Sri 

Lanka jurisdiction is characterized by several marginal 

marine Basins (e.g., the Mannar and Cauvery basins) in 

the central Indian Ocean. These localized sedimentary 

environments can also record global climatic signatures. 

This study discusses principal sedimentological changes 

and provenance of carbonate sediments in Sri Lanka. In 

this article, an attention has also been given to correlate 

sedimentary carbonate burial in Sri Lanka with respect 

to the major regional and global paleoclimatic changes 

Open Access  
ISSN: 2223-957X 

www.econ-environ-geol.org 

©SEGMITE  

mailto:amilageopera@gmail.com


 

2 

Int. j. econ. environ. geol. Vol:7(2) 1-9, 2016                               www.econ-environ-geol.org 

during the Cenozoic era. 

Study Area and Samples 

Geological background 

The offshore Mannar and Cauvery Basins are located 

between India and Sri Lanka (Fig. 1). These 

sedimentary Basins were probably developed as a 

result of the breakup of East-West Gondwana around 

167 Ma (Molnar and Tapponnier, 1975). The rifting 

and subsequent drifting of continental fragments were 

associated with the opening of the Indian Ocean 

(McKenzie and Sclater , 1971; Norton and Sclater, 

1979). In addition, intracontinental rifting formed 

graben structures on Indian and Sri Lankan margins 

(Shaw, 2002). The secondary openings of these 

offshore sedimentary basins began during the early 

Cretaceous of 137-124 Ma. It was followed by the 

northward movement of Indian plate as a single 

landmass before the sequential breakup of Sri Lanka, 

Laxmi ridge, Seychelles and Madagascar (Chatterjee et 

al., 2013). The igneous intrusions were recorded in the 

Mesozoic sediments. However, no volcanogenic 

sediments were observed in the Cenozoic sediments of 

offshore, Sri Lanka. The tectonic subsidence continued 

during the Cenozoic era and sediments were mainly 

deposited under shallow to deep marine stages. Thus, it 

led to deposition of thick pelagic clay, sandstone and 

carbonate shelf sediments under the influence of 

tectonic and climatic changes over the regional scale. 

Materials and Methods 

The drill core samples were considered from the 

offshore Mannar and Cauvery Basins (Fig. 1). In this 

study, sedimentary profiles of the Pearl-1, Dorado 

North, Dorado, Barracuda, Pesalai-1, Palk Bay-1, Delf-

1 and Pedro-1 were examined based on data available 

from the literature and original sedimentological 

observations. These stratigraphic and exploration wells 

were drilled from 1974 to 2011 by different consortia. 

Sampling sites consist of wide range of water depths 

and drilling depths in the Mesozoic-Cenozoic 

sedimentary profiles (Table 1).  

In detail, lithological compositions were 

determined based on mineralogy, color and cementing 

materials of cutting samples. The Dorado North and 

Barracuda cutting samples were extensively examined 

 

Fig. 1 (a) Simplified geological map of Sri Lanka shows the Mannar basin, Cauvery basin and Southern basin, (b) inserted 

regional map shows surrounding oceanic Basins on the Indian subcontinent and (c) onshore and offshore stratigraphic and 

exploration wells in the Mannar and Cauvery basins (modified after Ratnayake et al., 2014, Ratnayake and Sampei, 2015 b) . 

 

Table 1 Drilled well information of the Mannar and Cauvery Basins in Sri Lankan jurisdiction. 

Well Sedimentary 

Basin 

Classification Water depth (m) Total depth (m) Drilled year 

Pearl 1 Mannar Basin Exploration well 21.03 3050.44 1981 

Dorado Mannar Basin Exploration well 1383 3288 2011 

Barracuda Mannar Basin Exploration well 1509 4741 2011 

Dorado North Mannar Basin Exploration well 1346.4 3622 2011 

Pesalai 1 Cauvery Basin Stratigraphic well N/A 2593 1974 

Pesalai 2 Cauvery Basin Stratigraphic well N/A 2634.5 1975 

Pesalai 3 Cauvery Basin Stratigraphic well N/A 2917 1976 

Palkbay 1 Cauvery Basin Exploration well 15.24 2386.28 1976 

Delft 1 Cauvery Basin Exploration well 12.8 1784.6 1976 

Pedro 1 Cauvery Basin Exploration well 12.8 2011.68 1981 
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at Shimane University, Japan. Moreover, remaining 

and available cutting samples were stored at Petroleum 

Resources Development Secretariat (PRDS) sample 

room Colombo, Sri Lanka. The lithostratigraphic 

columns were reconstructed using fitting of 

lithological compositions into available unpublished 

age profiles based on paleontological and geophysical 

reports of the Petroleum Resources Development 

Secretariat. Variations of principal lithological 

boundaries were finally identified on the basis of 

compositions, following core observations and the 

efforts of several workers (Ratnayake et al., 2014; 

Kularathna et al., 2015; Premarathne, 2015; Ratnayake 

and Sampei, 2015 b; Premarathne et al., 2016).  

Results and Discussion 

Figures 2, 3 illustrate the distribution of main 

lithological units in the representative wells of the 

Mannar and Cauvery Basins. Stratigraphic relation-

ships among each facies are quite complicated due to 

lateral facies variations, both from east to west and 

from north to south under a wide variety of depths 

ranging from the onshore/basin margin to center 

deposits. Hiatuses and erosional unconformities also 

complicated the correlation of each facies in these 

sedimentary successions. However, the Cenozoic 

stratigraphy can be divided into two major depositional 

sequences based on broad-scale facies analysis. The 

lower sedimentary sequence mainly composed of 

mudstone and sandstones intercalations (Figs. 2, 3). 

These siliciclastic sediments were probably deposited 

in a marginal marine environment (Ratnayake et al., 

2014). It is overlain by carbonate-rich sediments of 

argillaceous marl/marlstone to limestone (Figs. 2, 3), 

and probably associated with relative high sea-

level/water depths. This sequence stratigraphic 

boundary is clear in all stratigraphic and exploration 

wells of the Mannar and Cauvery basins (Figs. 2, 3). 

However, their facies variations/basin fill processes 

have shown a complicated time intervals followed by 

local topography (bathymetry) of the basins. In detail, 

carbonate-rich facies were dominantly recorded in the 

deepwater basin-centers (e.g., Barracuda, Dorado and 

Dorado North wells) since the late Paleocene/Eocene 

epochs (Fig. 2). The present water depths are greater 

 

Fig. 2 Simplified stratigraphic columns of the Mannar Basin. (Note: Stratigraphic columns of the Dorado North, Dorado and 

Barracuda wells were illustrated considering depths to the present sea-level. However, stratigraphic column of the Pearl-1was 

illustrated without considering depth to the present sea-level). 
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than 1300 m in these deepwater exploration wells 

(Table 1). Similarly, carbonate burial was permanently 

developed in the shallow water basin-margins (e.g., 

Pearl-1, Pesalai-1, Palk Bay-1, Delf-1 and Pedro-1 

wells) since the Oligocene/Miocene epochs (Fig. 3). 

The present water depths are less than 25 m in the 

shallow water stratigraphic and exploration wells 

(Table 1). This trend suggests that the extensive 

carbonate burial was predominantly developed with 

limited clastic input and isolated bathymetric highs 

(relatively high sea-level). Consequently, this major 

facies change can be probably controlled by oceanic 

chemistry during the Cenozoic era (Fig. 3).  

Briefly, the early Cenozoic was characterized by 

noticeably higher concentrations of greenhouse gasses 

and a much warmer global temperature as well as poles 

with little or free ice in contrast to the present day 

(Pearson and Palmer, 2000; Zachos et al., 2001, 2008; 

Moran et al., 2006). For example, the earth 

experienced short-term and extreme global warming 

events such as the Late Paleocene Thermal Maximum 

(LPTM) and the early Eocene Climatic Optimum 

(EECO) during the early Cenozoic. The LPTM and 

EECO periods are characterized by a 5 to 6°C rise in 

deep-sea temperature and a long-term maximum in 

atmospheric carbon dioxide level respectively (Fricke 

et al., 1998; Bains et al., 1999; Lourens et al., 2005; 

Zachos et al., 2005, 2008; Weijers et al., 2007). 

However, the middle to late Cenozoic climate can be 

generally considered as global cooling era due to a 

sharp decline in atmospheric carbon dioxide level of 

more than 2000 ppm to below 500 ppm (Pearson and 

Palmer, 2000; Kent and Muttoni, 2008; Edwards et al., 

2010). This drawdown of atmospheric CO2 

concentration caused the growth of large continental 

ice sheets in the Antarctica (ca. 34 Ma) and the Arctic 

Oceans (ca. 3 Ma) over the Middle to Late Cenozoic 

(Molnar and England, 1990; Raymo and Ruddiman, 

1992; Pearson and Palmer, 2000; Pälike et al., 2006; 

Tripati et al., 2009).  

Geochemical and isotopic data also support the 

hypothesis of climatic transition from greenhouse to 

icehouse states. The marine 
87

Sr/
86

Sr isotope 

composition can be used as a proxy for chemical 

weathering rates (Hess et al., 1986; Richter et al., 

1992). The measured 
87

Sr/
86

Sr ratio in foraminifera 

from the Indian foreland basin and Bengal basin 

suggested uplift and erosion of the Himalayas starting 

 

 

Fig. 3 Simplified stratigraphic columns of the Pesalai-1, Palk Bay-1, Delf-1 and Pedro-1 wells in the Cauvery basin. 
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ca. 40 Ma ago (Najman et al., 2000, 2008). Similarly, 

the changes of benthic foraminiferal δ
18

O and δ
13

C 

values can reflect changes of ice-volume and 

temperature (Zachos et al., 2001; Pearson et al., 2009; 

Licht et al., 2014). For example, the relatively high 

δ
18

O values (>2.5‰) can probably suggest the 

development of permanent ice sheets according to the 

global deep-sea isotope records from over 40 sites in 

Deep Sea Drilling Project (DSDP) and Ocean Drilling 

Program (ODP) (Zachos et al., 2001). The compiling 

of above literature suggests that plate motion and 

orogeny in Asia is critical to understand global 

climatic changes during the Cenozoic era. Therefore, 

in this study, the author’s main aim is to correlate 

sedimentological evidence in marine sedimentary cores 

of Sri Lanka in relation to the timing of well-known 

climatic shift from greenhouse to icehouse states.     

Development of the middle Cenozoic carbonate 

platform of Sri Lanka was generally initiated due to the 

movement of Indian plate into northwards warmer 

latitudes (Ratnayake et al., 2014). Similarly, 

developments of the middle to late Cenozoic (Eocene-

Miocene) carbonate platforms are widely recorded in 

the surrounding oceanic Basins along the margin of 

Indian subcontinent (Whiting et al., 1994; Davies et 

al., 1995; Métivier et al., 1999). For example, the 

carbonate growth in the western continental margin of 

India began during the late Oligocene and resulted in 

the vertical aggradation up to 3000 m, and lateral 

progradation of 100 km thick carbonate sediments 

(Whiting et al., 1994). Moreover, the Cenozoic 

carbonate burial in Southeast Asia was controlled by 

the clastic influx, tectonics and oceanography/climatic 

fluctuations, as succinctly reviewed by Wilson (2002). 

In general, Himalayan rocks have been suggested as 

the main cause for the development of carbonate 

platform in the Bay of Bengal and Indus Fan 

sediments. Specifically, weathering of newly and 

continues uplifted Himalayan rocks caused to 

accumulate carbonate sediments in last ca. 40 Ma, 

which may be due to combined rapid physical 

denudation with chemical weathering and fast 

transportation of sediments to the Indian Ocean 

(Molnar and England, 1990). Moreover, the erosion of 

sediments also plays a fundamental role in a burial of 

organic carbon along with carbonate carbon in the 

surrounding oceanic Basins (Beck et al., 1995; France-

Lanord and Derry, 1997). However, here the author’s 

unresolved question is the main controlling factor to 

precipitate carbonate sediments in the deepwater 

Mannar and shallow water Cauvery Basins. Because  

carbonate deposition in these sedimentary successions 

can be mainly controlled by several factors such as an 

increase in weathering and erosion of silicate rocks, 

apparent increase in precipitation of calcite by 

coccolithophores and foraminifera, results in higher 

pCO2 at the surface, and/or a combination of these 

processes. It is still difficult to identify exact 

phenomena using only sedimentary profiles and it 

leaves as an unresolved question for future studies.  

In addition, the permanent carbonate accumulation 

in the deeply buried (present water depth > 1300 m) 

sediments occurred before the middle Eocene (ca. 40 

Ma ago). Therefore, these observations clearly 

suggested that neither Himalayan erosion nor chemical 

weathering has been directly influenced in an initiation 

of carbonate platform in the deeply buried offshore 

sediments in Sri Lanka. Furthermore, geological strata 

indicate carbonate accumulation after the Eocene-

Oligocene climate transition (ca. 34 Ma) in the 

relatively shallow buried (present water depth < 25 m) 

sediments (Figs. 2, 3). This period is characterized by a 

sharp decline in atmospheric CO2 concentration, as 

demonstrated by paleoclimatic proxy studies and 

model simulations across the globe (Raymo and 

Ruddiman, 1992; Zachos et al., 2001, 2008;  Edwards 

et al., 2010). Although the main controlling factor of 

carbonate precipitation is unknown. Well-preserved 

and permanent CaCO3 deposition in these sedimentary 

basins had a close teleconnection with the Cenozoic 

global cooling towards the present glaciated earth after 

the late Eocene/early Oligocene climatic transition 

(Pearson and Palmer, 2000; Pearson et al., 2009; Licht 

et al., 2014).  

To know the provenance of carbonate rocks in the 

offshore sedimentary basins in Sri Lanka is an 

essential point to understand the local system in Sri 

Lanka. It is determined that ODP sites 717, 718 and 

719 of the far south of Sri Lanka (~800 km) represent 

the most distal regions of Himalayas sediments during 

the Quaternary (Clift, 2006). The Quaternary 

sediments in the Indian Ocean show the highest 

sedimentation rates after the intensification of modern 

monsoon precipitation in South Asia (Harris, 2006). 

Consequently, it is suggested that proto-/Himalayan 

topographic elevations during the Eocene to Miocene 

epochs were not sufficient to provide enough 

suspended and dissolved sediment loads in Sri Lanka 

jurisdictions of the Mannar and Cauvery Basins, based 

on mainly ODP Leg 116 evidence in sites 717, 718 and 

719. The ODP Leg 166 was designed to investigate the 

history of the tectonic uplift in Asia, erosion of the 

Himalayas, and sediment transport and deposition 

mechanisms of the distal Bengal fan (Cochran et al., 

1987). In addition, this interpretation is highly 

dependable on multi-stages elevation history of the 

Himalayan region in the literature (Harrison et al., 

1992; Prell and Kutzbach, 1992; Raymo, 1994; 

Garzione, 2008; Wang et al., 2008). Therefore, the 

uplifted rocks in Sri Lankan and Indian landmasses 

(Eastern Ghats) can be suggested as possible sources 

for the carbonate burial in these sedimentary profiles 

under the tropical climate.  

 Another scenario could be that the uplifting of 

larger mountain plateaus in the Indian subcontinent 

provides a source of heating in the lower atmosphere 

during the summer, which creates a vast, low-pressure 

system over the subcontinent. A broad uplifted 

mountains act as a barrier and changing the Asian 

monsoon precipitation (Ramstein et al., 1997; Harris, 
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2006; Dupont-Nivet et al., 2007). There is no direct 

method to measure the past monsoon precipitation in 

these sedimentary basins based on stratigraphic and 

sedimentological features. In addition, the timing of 

intensification of the South Asian summer monsoon 

has been questioned. Because it depends on catchment 

area, sampling resolution, sedimentation rate/ 

distribution and analytical methods (Ratnayake et al., 

2017). In what follows, the Northern Hemisphere 

summer monsoon probably intensified in South Asia 

and decreased precipitation (aridification) in North/ 

Central Asia since them middle to late Miocene 

(Pagani et al., 1999; Dettman et al., 2001; Zhisheng et 

al., 2001; Gupta et al., 2004; Dupont-Nivet et al., 

2007). Although the author never expects Himalayan 

sediments in the Mannar or Cauvery Basins during the 

Miocene, the carbonate-rich offshore (Figs. 2, 3), and 

onshore rocks in the Miocene (Ratnayake and Sampei, 

2015a) could probably be deposited under the initiated 

present Asian monsoon seasonality, according to an 

observed paleoclimatic/ sedimentological teleconn-

ection with the regional scale.  

Conclusion 

Geological evidence indicates that carbonate-rich 

sediments were mainly deposited since the Late 

Paleocene in the deep water Mannar Basin and started 

after the Eocene-Oligocene climatic transition in the 

shallow water areas of the Mannar and Cauvery 

Basins. In a broad sense, the trend of carbonate 

deposition in the offshore area of Sri Lanka had a 

relationship with long-term (million-year scale) 

gradual reduction of atmospheric carbon dioxide 

concentration, and formation of Antarctic continental 

ice-sheets towards the present glaciated Earth. The 

geological provenances of pelagic carbonate sediments 

in Sri Lanka could be probably related to local sources 

rather than proto-/Himalayan sources. It has also been 

proposed that the Miocene geological strata could 

probably deposit under the influence of present 

summer monsoon seasonality in South Asia.    
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