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Abstract: With growing urbanization in mountainous landscapes, the built-up areas dominate other land use classes 

resulting in increased land surface temperature (LST). Gilgit city in northern Pakistan has witnessed tremendous 

urban growth in the recent past decades. It is anticipated that this growth will exponentially increase in the near 

future because of the China-Pakistan Economic Corridor (CPEC) initiatives, as this city happens to be the 

commercial hub of the northern region of Pakistan. The objective of present study is to explore the influence of 

land use and land cover variations on LST and to evaluate the relationship between LST with normalized 

difference vegetation index (NDVI), normalized difference water index (NDWI), and normalized difference built -

up index (NDBI) values. This study is carried out on data from Google earth and three Landsat images (Landsat 5-

TM, Landsat 7-ETM, and Landsat OLI_TIRS-8) during the period from 1992, 2004 and 2016. Land use/cover 

classes are determined through supervised classification and LST maps are created using the Mono -window 

algorithm. The accuracy assessment of land use/cover classes is carried out comparing Google Earth digitized 

vector for the periods of 2004 and 2016 with Landsat classified images. Further, NDVI, NDBI, and NDWI maps 

are computed from images for years 1992, 2004, and 2016. The relationships of LST with NDVI, NDBI, and 

NDWI are computed using Linear Regression analysis. The results reveal that the variations in land use and land 

cover play a substantial role in LST variability. The maximum temperatures are connected with built -up areas and 

barren land, ranging from 48.4°C, 50.7°C, 51.6°C, in 1992, 2004, and 2016, respectively. Inversely, minimum 

temperatures are linked to forests and water bodies, ranging from 15.1°C, 16°C, 21.6°C, in 1992, 2004, and 2016 

respectively. This paper also results that NDBI correlates positively with high temperatures, whereas NDVI and 

NDWI associate negatively with lesser temperatures. The study will support to policymakers and urban planners to 

strategize the initiatives for eco-friendly and climate-resilient urban development in fragile mountainous 

landscapes. 

Keywords: Land surface temperature, land use land change, Gilgit, HKH. 

Introduction  

In recent decades, researchers and policymakers 

greatly focus to understand rapidly changing climatic 

conditions and associated impacts under the 

influence of human activities. The rapid 

industrialization and urbanization processes have a 

major contribution towards global climate change 

and one of the concerns in this process is rising 

surface temperatures in urban areas due to land use 

and land cover change (LULC). Recent research 

showed that land use and land cover change 

contribute 68% of the warming trends (Zhou et al., 

2004) and substantial effects on the regional climate 

change (Hale and Loveland, 2008; Kalnay and Zhou, 

2005; Lim and Cai, 2005, Laux et al., 2017). The 

change of land surface into built-up areas comprising 

housing and commercial infrastructure i.e., road 

networks, etc. affects temperature, air quality and 

relative humidity (Zhao et al 2004, Tran et al., 2017, 

Trotter et al., 2017). Loss of vegetative cover by 

replacing with built-up infrastructure cause urban 

heat island (UHI), a term commonly used to describe 

the higher temperature in an urban area as compared 

to rural settings. Such a situation has adverse effects 

on the lives and daily activities of urban population 

(Santamouris, 2015, Lee et al., 2017) and it causes 

more concern because one quarter of the mountain 

areas and half of world’s inhabitants live in cities. In 

addition, UHI greatly influences the upper 

atmosphere with increasing warming trends and the 

greenhouse effect (Kalnay and Cai, 2003; Zhong et 

al., 2017). UHI is influenced by many factors that 

include LULC. The analysis of land use/change due 

to urbanization shows that it has a high influence on 

UHI intensity (He et al., 2007; Singh et al., 2017; 

Arsiso et al., 2018). Considering IPCC Fifth 

Assessment Report (IPCC 2013b), since 1880 

worldwide mean surface temperatures have increased 

by 0.84 C and recent studies have projected 0.27 C 

mean surface warming per century is due to land-use 

changes alone (Kalnay and Cai, 2003; Mahowald et 
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al., 2017). Thus, it is imperative to analyze LULC 

particularly for those regions that are more 

vulnerable to climate change effects. Any adverse 

effect on such regions can make the life of the huge 

population and its habitat very challenging. For 

example, the Hindu Kush Karakoram Himalayan 

(HKH) region covers more than 4.3 million km
2
 area, 

in eight countries including Afghanistan, Pakistan, 

China, India, Nepal, Bhutan, Bangladesh, and 

Myanmar. It also encompasses several highest peaks 

and provides water and ecosystem services to ten 

large rivers basins in Asia, consequently 1.3 billion 

people are dependent on the water of these rivers’ 

basins (Singh et al., 2011). The warming trends in 

such regions like HKH which are predicted to rise by 

4-5
0
C and increase in rainfall by 20-40% are 

perturbing due to potential hydrological variations 

that can affect water availability and ecosystem 

services for huge populations relying on glaciers 

(Barnett et al., 2005; Kulkarni et al., 2013).  The 

warming trend on the HKH is apparent causing 

glacier retreat, reduction in snow cover change, rise 

in surface temperature (Barnett et al., 2005; Pepin et 

al., 2015; Qiu, 2008; Mukhopadhyay, 2015; You et 

al., 2017, Wu et al., 2017; Ren et al., 2017). The ten 

large river basins in the HKH where snow and 

glacier mostly contribute to river discharge are very 

receptive to climate change (Kumar et al., 2015). The 

HKH is apparently one of the most sensitive regions 

for climate change. Many studies and models are 

used to determine the past, current and future 

warming trend in the face of global warming. 

However, highly limited climatic related data of the 

region restricts proper cross-validation of the many 

climate change conclusions in the region, making 

imperative to make more efforts for international, 

national and local bodies for the availability of valid 

data (IPCC 2013a, 2013b). 

This research study will also help to understand 

dynamics of urbanization in fragile mountainous 

landscape and its potential as a contributing factor in 

changing local climate conditions. In addition, to 

support capacity building of local mountain 

communities to formulate policies to cope with 

climate change factor. More specifically the research 

aims at studying the impact of LULC on land surface 

temperature to determine relationship between LST 

and land usage types. 

Materials and Methods 

Study Area 

The study was conducted in Gilgit city, the capital of 

Gilgit-Baltistan (G-B), in northern Pakistan. It lies 

between 35°51’31.99’’ N to 35°55’58.18’’ N and 

74°13’27.39’’ E to 74°31’24.15’’ E, at 1500 m altitude 

(Fig. 1). The study area was selected because of its 

current unprecedented urban growth and its strategic 

location, considered as the gateway to the CPEC and 

Karakoram Highway, a junction between China and 

Eurasian countries. In addition, the area is located in 

high climate change vulnerability region of HKH. 

The city is surrounded by high altitude barren and 

snow-covered mountains. Gilgit experiences an 

extreme climate, in winter temperature goes down to 

minus degree Celsius and in summer, it rises to 40 

degrees Celsius with bright sunshine. Gilgit lacks 

substantial rainfall, averaging in 134 mm annually 

(Adnan et al., 2017). Urbanization and vegetation 

make the major land use of the study area. Urban areas 

mainly comprise of residential units, commercial areas, 

public buildings, roads, and educational facilities. 

Agricultural activities include the fruit orchards, agro-

forestry, and cultivation of wheat and potato. Snow 

and glacial melts, gravity-fed water from streams and 

water pumping from Gilgit river using thermal or 

hydroelectricity are the main sources of irrigation in 

Gilgit city. 

 

Fig. 1 Study area. 

Data Collection 

The study is based on primary and secondary sources, 

which is collection and analysis of remote sensed and 

GIS-based data ensuring the high accuracy in 

determining the change in land use/cover with 

corresponding variations in land surface temperature 

(LST). A time-series of Landsat images were used 

which include Landsat Thematic Mapper (TM), 

Enhanced Thematic Mapper Plus (ETM+) and 

Operational Land Imager (OLI) images to develop land 

use/ cover maps that included full scenes for the study 

area for the years 1992, 2004, and 2016, respectively. 

All bands including the thermal bands, which are 

common for determining LST, were used in this study. 

The images were cloud-free (less than 1%) acquired in 

July, i.e. summer time while vegetation growth is at its 

peak. The primary dataset is downloaded from the 

archives of the United State Geological Survey 

(USGS) with 30-meter spatial resolution. Whereas, 

secondary data that include district and municipal 

boundaries were sourced from the government of 
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Gilgit-Baltistan. Google Earth (GE) was also used in 

this study to download two images from Google Earth 

5.0. in August 2004 and August 2016 having green, 

red, and blue bands with a spatial resolution of 2 

meters. Detailed description of the data used for this 

study is given in Table 1. 

Table 1 Description of data used for this study. 

Data Type 
Data 

production 

Scale 

(m) 
source 

Landsat TM July 1992 30 USGS 

Landsat ETM July 2004 30 USGS 

Landsat 
OLI/TIRS 

July 2016 30 USGS 

Google Earth 

Images 
August 2004 2 

Google 

Earth 

Google Earth 
Images 

August 2016 2 
Google 
Earth 

DEM  30 USGS 

SRTM  30 USGS 

Administrative 

boundary 
   

 

Landsat images were analyzed through different 

steps: (1) Image pre-processing and image 

enhancement; (2) Image classification; (3) 

Computation of NDVI, NDWI, and NDBI; (4) LST 

for each image is computed; (5) Data were analyzed, 

calculated, and manipulated through attribute tables 

in ArcGIS after being converted to vector files (Fig. 

2). 

Image Pre-Processing and Enhancement 

The study was mainly based on the collection and 

analysis of remotely sensed data. The images were 

cloud-free acquired in July. The dataset was mainly 

downloaded from the archive of the United State 

Geological Survey (USGS). Three cloud-free Landsat 

images of the year 1992, 2004 and 2016 were rectified 

to UTM 43 Zone. Image processing was performed in 

ILWIS 3.6 Software, like filtering, image equalization, 

histogram equalization, band composition, and 

starching.  

Keeping in view the increasing trend of using Google 

earth derived imagery by different commercial 

companies and researchers through visual interpretation 

to complement low-resolution multispectral digital data. 

Thus, this study also used Google earth derived images 

by manually digitalizing to complement Landsat dataset 

using five classes that include vegetation, agriculture 

 

Fig. 2 Details of land use land cover change. 

Table 3. Details of land-use change. 

Land use types 

(Class name) 

Area 

(Hectares) 

1992 

Area 

Percentage 

1992 

Area 

(Hectares) 

2004 

Area 

Percentage 

2004 

Area 

(Hectares) 

2016 

Area 

Percentage 

2016 

Area 

Changed 

(Hectares) 

Built-up Land 139.1 3.3 174.3 4.1 538.2 12.7 399.1 (Increased) 

Water 237.1 5.6 230.2 5.5 216.1 5.1 21 (Decreased) 

Vegetation Land 1054.2 25.0 949.5 22.5 926.7 21.9 127.5(Decreased) 

Agriculture Land 701.5 16.6 998.3 23.6 879.5 20.8 178 (Increased) 

Barren Land 1916.3 45.4 1870 44.3 1487.4 35.2 428.9(Decreased) 
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land, built-up land, water bodies and barren land. 

Google Earth (GE) 5.0 was used to download two GE 

images. These GE images acquired on 13 August 2004 

and August 2016 and have green, red, and blue bands 

with a spatial resolution of 2 m. Both images were geo-

referenced by using UTM 43 coordinate system in 

ArcGIS software; geo-referenced images were later 

mosaicked in ArcGIS software. 

Image Classification 

Landsat images for the benchmarks 1992, 2004 and 

2016 were mapped for five LULC types namely; 

vegetation land, agriculture land, built-up areas, water 

bodies, and barren land were focused for this study. 

Training sites were developed after analyzing ancillary 

information, spectral and spatial profiles, as well as 

reference data from several sources. For individual 

land cover class 40 pixel of 40 training samples were 

selected. After training sites were digitalized, their 

statistical properties of land cover categories were 

computed. The maximum likelihood algorithm was 

used for the classification of Landsat images with a 

supervised signature extraction. The accuracy 

assessment was carried out on three classified maps 

using stratified random sampling methods. Total 40 

samples were chosen from each LULC class to verify 

with field check and field survey data were used as 

reference data for accuracy assessment. The accuracy 

of classification was 86%, 83%, and 88% with a Kappa 

coefficient of 0.62, 0.69, and 0.72, respectively for the 

years 1992, 2004, and 2016 respectively (Table 2). 

Table 2. Accuracy assessment for the years 1992, 2004 and 2016. 

Years Overall Accuracy Kappa Index 

1992 86% 0.75324 

2004 83% 0.75791 

2016 88% 0.75549 

 

Computation of NDVI, NDWI, and NDBI  

Several studies have used NDVI parameter to detect 

and monitor land LULC changes (Lunetta et al., 

2006; DeFries and Townshend, 1994; Bery and 

Mackey, 2018; Zoungrana et al., 2018) as a 

comparison with other indices it is less sensitive to 

atmospheric conditions. In this study, NDVI was 

used to analyze and represent the relationship 

between vegetation area and LST by linear 

regression correlation. Following formula was used 

to compute NDVI for an image: 

     
       

       
------(1) 

NDBI is used by several researchers for monitoring 

built-up and human settlements situations (Xu 2007; 

Guha et al 2018; Jianhui et al 2018). NDWI is 

determined to indicate the state of water state of 

vegetation (Mcfeeters, 1996). The values can be in 

the range of -1 to +1 for NDWI and NDBI. Positive 

values represent more water bodies, built-up and 

vice-versa for negative values (Gao, 1996). The 

formula for the computation of these indices are as 

follows: 

     
       

       
------(2) 

     
       

       
------(3) 

Computation of Land Surface Temperature 

   
  

  
  

 
  

------(5)
 

Where 

Tb=is the satellite brightness temperature is degree 

kelvin 

K1= 666.09- is the constant used for the study area 

K2=1282.71-is the constant used the study area 

The three LST images derived were then converted to 

the most common unit-degrees Celsius-by subtracting 

with absolute zero (approximately -273.15 c) using the 

raster calculator. 

Results and Discussion 

The results of this research are presented in the 

following three subsections.  

Land Use/Land Cover Maps 

By using supervised classification maximum 

likelihood method, the Landsat imagery of each 

composed image for the years 1992, 2004, 2016 were 

classified into five area classes namely vegetation, 

agriculture, built-up areas, water bodies, and barren 

land with high accuracy, covering an area of 

approximately 4222.2 hectares (Table 3, Fig. 2). LST 

variations were caused by LULC, particularly around 

the main city areas, which have increased drastically. 

The results (Table 3 and fig. 3) reveal that there is a 

significant gain in the built-up area as it increased by 

0.92% (35.2 hectares) from 1992 to 2004. Agriculture 

land area increased by 7% (296.8 hectares) and 

vegetation cover was reduced by 2.5% (104.7 hectares) 

during 1992 to 2004. In the period from 2004 to 2016, 

built-up land has drastically increased by 8.62% (363.9 

hectares) and all other land covers reduced significantly. 

Overall, during 1992 to 2016, the built-up area increased 

by 9.4% (399.1 hectares), water bodies decreased by 

0.5% (21 hectares), vegetation decreased by 4.9% 

(127.5 hectares), agriculture land increased by 4.2% 

(178 hectares), and barren land decreased by 5.2% or 

428.9 hectares (Table 3 and Fig. 3). 

http://www.mdpi.com/2220-9964/5/2/15/htm#table_body_display_ijgi-05-00015-t003
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The summarized results show that there is an increase 

in built-up land and agriculture land, while a drastic 

decrease in barren land use, vegetation and water 

bodies. This shows that there is increased demand on 

land by the growing population due to increase in 

rural-urban migration, social, political and economic 

reasons, and particularly the Gilgit city which is the 

financial hub of the Gilgit-Baltistan province. The 

study validates earlier findings that due to political and 

economic reasons, there is rapid urban growth (Wali, 

2016). A large portion of the barren land is utilized by 

the construction of government buildings that lead to 

further migration of population and generation of 

economic activity to surrounding areas of the city. One 

of the reasons for the decrease in water bodies that can 

be noticed from maps is due to encroachments and 

constructions of buildings within the banks of river and 

streams in Gilgit city. 

Findings of the study are inconsistent with previous 

assessments of land-use changes in the Himalaya 

because of rapid urban growth (Anbalagan, 1993). 

Previously such changes in land use have also been 

observed in the form of expansion (encroaching 

surrounding agricultural lands, forests and rural 

environments) and intensity (increase in the density of 

the covered area, building, and population) within the 

towns (Walker, 2011). In the absence of proper 

planning, such changes may result into depletion of 

forests, vegetated areas and water bodies (Izakoviˇcová 

et al., 2017), leading to increase vulnerabilities for 

environmental and climatic change effects (Tiwari et 

al., 2018). 

 

Fig. 3 Spatial distribution of land use and land cover (LULC) 

change. 

Computation of Land Surface Temperature 

One of the key objectives of this research work was to 

generate a map representing absolute LST of the study 

area. LST values for the years 1992, 2004, and 2016 

ranges between 15.1-48.4
◦
C, 16-50.7 

◦
C, 21.8-51.6 

◦
C, 

respectively (Fig. 4). It was found that the highest LST 

Fig. 4 Spatial distribution of LST for years 1992, 2004, and 2016. 
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for the study area increased by 3.2 
◦
C during 1992-

2016 (Table 4). Similarly, the lowest LST for the area 

is also increased by 6.7 
◦
C from 1992 to 2016 (Figure 

4). These variations, in addition to the global climate 

changes, can be attributed to land-use changes with 

dominant built-up areas causing UHI effects. Rapid 

urbanization of the areas, e.g Markets or business areas 

of the Kashirote and Jutial localities can be noticed that 

there is a significant increase of LST. Overall, the 

maximum temperature can be noticed in the 

surrounding of the main city area, which are Jutial, 

Noor Colony, and Sakwar areas. These areas are 

mostly consisting of barren land and built-up areas 

(Fig. 4). 

The results correspond with global temperature 

increase in the northern hemisphere, particularly with 

the unprecedented increase in Himalayas, which is 

estimated to be much greater than the global average of 

0.74°C over the last 100 years (IPCC, 2007; Du et al., 

2004). The findings could not be evaluated in detail in 

line with more localized context such as Fowler and 

Archer (2006) observing a ‘conflicting signals of 

climate change in the western Himalayas on the basis 

of decreasing mean and minimum summer 

temperatures and increasing mean and maximum 

winter temperatures in Gilgit. However, it corresponds 

to some extent with Fowler and Archer (2006) in terms 

of highest LST increase of 3.2   compared with lowest 

LST increase of 6.7    during 1992-2016. 

In addition to global temperature trends, the 

temperature variations in Gilgit city seem to be greatly 

influenced by land-use changes. This is evident from 

temperature variation in city centers and peripheries, 

the former comprises of built-up areas dominated with 

vegetation and the later comprises of alluvial fans or 

slope lands, dominated by bare ground and rocks 

devoid of vegetation. LST in peripheral areas was 

higher than that of the built-up areas in city centers. 

Table 4. Details of temperature change. 

Year Min Average Max ST DIV 

2016 21.803864 38.454342 51.654572 5.899267 

2004 16.37445 36.599 50.786499 6.171077 

1992 15.179504 36.084693 48.487305 6.012193 

 

Co-relationship between NDVI, NDBI and NDWI with 

LST 

The findings revealed higher temperatures in the 

surrounding areas of the city as compared to inside the 

city. Hence, in contrast to the previous studies (Buyadi, 

et al., 2013; Rogan, et al., 2013) which show higher 

temperatures inside city areas than the outside, the 

results of this study conclude Ibrahim, (2017) that 

sun’s heat is absorbed into the barren land and 

rocks/mountains, making it warm earlier than other 

land cover categories. On the other hand, other land 

cover categories (Ibrahim, 2017) that include 

vegetation areas have the capacity to retain heat for 

longer and release heat slowly at night (Ramírez et al 

2012). In addition, one of the main arguments besides 

may be the urban area of Gilgit city has green fields, 

adjacent to the main market, big trees (around airport 

area and between buildings) streets and inner-city link 

roads are earthen/unmetalled roads that make it low-

temperature area. In addition, the variation in LST is 

also formed by the land type, as different types of land 

cover have potential in terms of heat absorption and 

radiation. In Gilgit city case, the built-up areas have 

higher absorption (as built-up areas have lower albedo) 

than barren land, whereas in surrounding city, is barren 

land that has lower absorption and releases heat early. 

Thus, results of this study are similar to those of Kant 

et al., (2009) whose outcome proved that bare land and 

built-up areas have a higher LST in the daytime as 

compared to other categories.  

Fig. 5 Correlation between LST and NDWI for years 1992, 2004, 
and 2016. 

To better understand the effects of LULC changes on 

LST there is a need to realize the relationship between 

land use types and thermal signatures (Weng, 2001). 

Based on randomly selected 50 points, NDVI, NDBI, 

and NDWI are computed from Landsat TM-5 1990, 
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2004, and Landsat OLI_TIRS-8 2016. In a way to 

assess the relationship between NDVI, NDBI, NDWI 

and LST, a regression analysis was used to present the 

relationship quantitatively. Analysis based on linear 

regression showed the correlation coefficient (r) range 

from 0.90 to 0.92 in the year 1992, 2004, and 2016, 

respectively (Fig. 5-6). The observed relationship is a 

negative correlation between NDWI and LST, 

whereas, a positive correlation is found between NDBI 

and LST. From the analysis, it was observed that the 

vegetation covers had shown a considerable low 

radiant temperature throughout the year. The cultivated 

land and bare soil showed a significant increase in 

temperature. It is noted that the land-use changes have 

contributed to Urban heat island (UHI) intensity over 

the study area through the process of urban sprawl and 

degradation of vegetation area.  

 

Fig. 6 Correlation between LST and NDBI for years 1992, 2004, and 
2016. 

Another important observation is that temperature 

around the urban centers can be attributed to vegetative 

cover, which is concentrated in built-up areas and 

lacked in peripheries. This contradicts the phenomenon 

of urbanization causing depletion of vegetative cover 

(Walker, 2011, Tiwari et al., 2018). Such a situation 

characterizes the pattern of the built environment, 

peculiar to northern Pakistan, comprising of fruit trees 

and a small kitchen garden, as an integral part of every 

house. In addition, the network of narrow roads and 

pavements also contain trees on both sides. In most of 

the cases, grapevines and other creeping plants also 

cover concrete and iron roofs.  Such a mosaic of green 

areas within built-up environs increase resilience and 

adaptability of dwellers, on one hand by reducing the 

intensity of heat effect and on the other contributing to 

household food security obtained from vegetables and 

fruit production for household consumption. To 

overcome the heat stresses and other associated issues 

within the urban center, planners recommend 

increasing the extent of public green areas or green 

infrastructure (Dobrucká, 2009). Afforestation 

optimizes LST by altering local albedo and turbulent 

energy fluxes (Peng et al., 2014). 

Conclusion 

This research work monitored land use/cover changes 

over two and half-decade period using remote sensing 

and Google Earth’s data and further, it studied how it 

influences the land surface temperature in Gilgit city. 

The approach was very reliable to achieve the 

objectives of this study, which revealed the variations 

in land use classes and their influence on LST. The 

maximum LST and minimum LST for the entire study 

area increased by 3.2 
◦
C and 6.7 

◦
C respectively over 

the period of 1992 to 2016. The results showed that 

there is a strong correlation between LST and LULC, 

as the LST values changed over the diverse classes. 

For example, barren land surrounding the city had 

higher temperature than vegetation areas inside the 

city. It was concluded that the water bodies (NDWI) 

and vegetative land (NDVI) are negatively correlated 

with the LST and built-up areas (NDBI) had positive 

correlation with LST. This work has investigated the 

relationship between LST and LULC change for a 

small portion of the HKH region. However, there is a 

need to expand the area of study in the future and 

explore the relationship of LST with regional climatic 

data to investigate the effects of LULC change on 

regional climate. This study will also help to 

understand the current ground realities and collect the 

valid local data (cities data) of the mountain regions 

like HKH, consequently making it easier to 

comprehend the climate change issues at the regional 

and national levels, which can be further shared with 

local communities to address the climate change 

adaptation and mitigation challenges. 

The lower LSTs in the particular context of built-up 

areas in Gilgit shows the importance of vegetative 

cover in minimizing the heat island effect. In the 

context of urban centers in Asian highlands, it seems to 

be an effective adaptation measure. In addition to 

maintaining LST, fruit trees and kitchen gardens also 
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enhance socio-economic resilience by contributing to 

the household economy and food security. 
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