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Abstract: Artificial neural networks are generally information processing systems that mimic the working principles of 

the human brain or central nervous system. Artificial neural networks are a method that gives successful results in 

solving many daily life problems such as classification, modeling and prediction. Artificial neural networks accomplish 

this by adjusting the connection weights between neurons. It can solve prediction and classification problems with back 

propagation algorithm, which is widely used in artificial neural networks with multilayer perceptron. In this study, 

unknown calorific values were tried to be estimated by using the analysis values (depth, ash, moisture, sulfur, calorific 

value) of the drillings realized in the Kütahya -Gürağaç lignite field. An artificial neural network was created for this 

purpose. First, 8 neurons were used in the hidden layer of the network, and 10 neurons were used secondarily. In the 

artificial neural network, the learning function is sigma, the learning rate is 95%, and the network is trained using 

Levenberg-Marquardt as the training algorithm. The network with 10 neurons converged at the desired margin of error 

(1e-07) and was completed after 271 iterations. The relationship between actual calorie values and predicted calorie 

values with network training reached a high ratio of R2=0.97. After the training of the network is completed, the 

network is simulated for the estimation of seams with unknown caloric values. As a result, caloric values were 

determined with an average of 97% confidence interval for the unknown coal seams of the field. 

Keywords: Artificial neural networks, calorific value, coal seam. 

Introduction  

Artificial neural networks (ANN) are information 

processing systems that generally imitate the working 

principles of the human brain or central nervous 

system (Freeman and Skapura, 1991). Studies on this 

subject first started with the modeling of neurons, 

which are the biological units that make up the brain, 

and their application in computer systems. Neurons are 

interconnected by connections, and each connection 

has a numerical weight that expresses the strength, or 

in other words, the importance of its input. Weights are 

the main tool of long-term memory in ANNs. A neural 

network learns by repeatedly adjusting these weights 

(Negnevitsky, 2005). The generalization ability of the 

artificial neural network is directly related to the 

correct selection of the topology of the network. The 

optimal architecture for the network should be large 

enough to learn about the problem and small enough to 

generalize. A network that is smaller than the most 

suitable architecture cannot learn the problem well, on 

the other hand, a larger network over-learns the 

training data, which causes it to memorize and 

therefore has poor generalization ability. There are 

basically two greedy approaches to determining the 

structure of the network: growing/constructive and 

pruning/destructive. If the structure of the network is 

chosen small and grows during the learning process, a 

growing/constructive approach is followed; on the 

contrary, a pruning/destructive approach is followed if 

it is chosen large and shrinks during the learning 

process (Aran et al., 2009). 

Results and Discussion 

Artificial Neural Networks 

Artificial neural networks are generally divided into 

two as single-layer perceptron and multi-layer 

perceptron. 

Single Layer Perceptron Model 

Single-layer artificial neural networks are used to solve 

linear problems and consist of only input and output 

layers. Layers may have one or more neurons. A 

simple single-layer perceptron model is shown in 

Figure 1. 

 

Fig. 1 Single layer perceptron model. 

The threshold input prevents the values of the neuron 

elements and the output of the network from being 0 in 

such networks. Its value is always 1. The output of the 

network is obtained by summing the weighted input 

values with the threshold value as shown in Equation 1 

(Arı and Berberler, 2017). 
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𝑁𝑜 = 𝑓 (∑ 𝑤𝑖𝑥𝑖 +

𝑛

𝑖=1

⏀) (1) 

In Equation 1, 𝑥𝑖, 𝑖 = 1,2, …, 𝑛 are the inputs of the 

network, 𝑤𝑖, 𝑖 = 1,2, …, 𝑛 are the corresponding 

weight values, and 𝜙 the threshold value. In a single-

layer perceptron, the output function is linear. Thus, 

the examples shown to the network are shared between 

the two classes by the threshold function, and the line 

that separates the two classes is tried to be found. The 

output of the network takes a value of 1 or −1. The 

threshold function is shown in Equation 2. 

𝑓(𝑔) = {
   1
−1

 
𝑁𝑜 > 0
𝑁𝑜 ≤ 0

} (2) 

The class separator line is defined as in Equation 3. 

𝑤1𝑥1 + 𝑤2𝑥2 + ⏀ = 0 (3) 

From here; 

𝑥1 = −
𝑤2

𝑤1

𝑥2 −
⏀

𝑤1

 (4) 

 

𝑥2 = −
𝑤1

𝑤2

𝑥1 −
⏀

𝑤2

 (5) 

 

 
is obtained as by using Equations 4 and 5, the class 

separator line, whose geometric representation is given 

in Figure 2, can be drawn. 

 

Fig. 2 Geometric representation of the class separator line. 

Weight values are changed with the formula in 

Equation 6 at each iteration to determine the class 

separator line to best separate both groups (Arı and 

Berberler, 2017). 

𝑤𝑖(𝑡 + 1) = 𝑤𝑖(𝑡) + ∆𝑤𝑖(𝑡) (6) 

The threshold value is also updated with the formula in 

Equation 7 at each iteration to shift the class separator 

line between classes. 

⏀(𝑡 + 1) = ⏀(𝑡) + ∆⏀(𝑡) (7) 

There are two main models for single-layer sensors. 

 Perceptron Model 

 Adaline/Madaline Model (Öztemel, 2012). 

a) Perceptron (Simple Sensor) Model 

The perceptron model, developed by psychologist 

Frank Rosenblatt in 1958 to "simulate some of the 

basic properties of intelligent systems", is based on the 

principle that a nerve cell produces an output by 

considering more than one input. The output of the 

network is obtained by comparing the weighted sum of 

the input values with a threshold value. If the total is 

greater than or equal to the threshold, the output value 

is 1, and 0 if it is less. Rosenblatt developed a learning 

rule for sensor training that solves pattern recognition 

problems (Rosenblatt, 1958). He proved that this rule 

will always converge to the correct weights if there are 

weights that solve the problem. Marvin Minsky and 

Seymour Papert have publicly demonstrated that 

sensors can be used in very limited areas and that there 

are too many problem classes that the detector cannot 

solve, in their book "Perceptrons", as a result of their 

deep mathematical investigations on sensors (Minsky 

and Papert, 1969). An example of problems that 

sensors cannot solve is the XOR problem. This 

limitation of the sensors was eliminated with the 

development of the multilayer perceptron model in the 

1980s. 

Adaline Model 

Bernard Widrow started working on neural networks in 

the late 1950s (Widrow, 1959). In 1960, Widrow and 

his graduate student Marcian Hoff developed a method 

called the Least Mean Square algorithm with the 

ADALINE network. This neuron model, with the clear 

name 'ADAptive LINEar NEuron' or 'ADAptive 

LINEar Element', does not differ much from the 

perceptron structurally. However, ADALINE considers 

the linear function while using the threshold function as 

the sensor activation function. In both models, there can 

be solutions only for linearly separable problems. The 

Least Squares algorithm, also called the Widrow-Hoff 

rule, is more powerful than the perceptron learning 

method. Even if the perceptron learning rule 

guarantees convergence to a solution, it can be noise 

sensitive due to the proximity of the training patterns 

to the borderline. The least squares algorithm tries to 

keep the training patterns as far from the boundary line 

as possible, as it minimizes the mean squared error. 

Widrow and Hoff also developed the MADALINE 

neural network model, which includes multiple 

adaptive elements (Widrow and Hoff, 1960). 

Multi-layer Perceptron Model 

The failure of single-layer perceptions to solve 

nonlinear problems has led to the development of 

multi-layer perceptron (MLP). These sensors consist of 

an input layer, one or more hidden (intermediate) 

layers, and an output layer. They also have transitions 

between layers called forward and backward 

propagation. In the forward propagation step, the 

output of the network and the error value are 

calculated. During back propagation, the interlayer link 

weight values are updated to minimize the calculated 
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error value. The general structure of these sensors is 

shown in Figure 3. The back-propagation learning 

algorithm, which is a generalization of the least 

square’s algorithm in the linear perceptron, is used in 

the MLP model. 

 
Fig. 3 The general structure of MLP. 

Back Propagation Algorithm 

The back-propagation algorithm consists of the stages 

where the output of the network is determined, the feed 

forward and the weights are updated by back 

propagation to reduce the gradient of the error. In the 

feed forward stage, the inputs of the training set are fed 

to the input layer of the network. The input layer 

contains neurons that accept these inputs. For this 

reason, the number of neurons in the input layer must 

be equal to the number of input values in the data set. 

The neurons in the input layer pass the input values 

directly to the hidden layer. Each neuron in the hidden 

layer calculates the total value by adding the threshold 

value to the weighted input values, and transmits them 

to the output layer by blending them with an activation 

function. The weights between the layers are usually 

randomly chosen at the beginning. After the net input 

of each neuron in the output layer is calculated by 

adding the threshold value to the weighted input 

values, this value is again processed with the activation 

function to determine the output values. 

The error value is found by comparing the output 

values of the network with the expected output values. 

Therefore, the number of neurons to be found in the 

output layer must match the number of outputs in the 

data set. After the 𝒏th training data for the 𝒋th output 

cell, the error is defined as follows, with 𝒅(𝒏) being 

the expected value; 

𝑒𝑗(𝑛) = 𝑑𝑗(𝑛) − 𝑦𝑗(𝑛) (8) 

The total error in the output layer is expressed by 

Equation 9. 

𝐸 (𝑛) =
1

2
∑ 𝑒𝑗

2(𝑛)

𝑗∈𝐶

 (9) 

The set 𝐶 contains all the neurons in the output layer. 

Here, (𝑛) is tried to be minimized with an approach 

similar to the delta rule. The sum of the inputs to the 

output layer cell is expressed by Equation 10. 

𝑣𝑗(𝑛) = ∑ 𝑤𝑗𝑖(𝑛)𝑥𝑖(𝑛)

𝑚

𝑖=0

 (10) 

X = (x1…xn), 𝑗. 𝑚 indicates the input value applied to 

the neuron, 𝑤𝑗 indicates the weight of the 𝑥𝑖 input, and 

𝑓 the activation function. 𝑤𝑗0 denotes the deviation 

element so that 𝑥0 = +1. The result produced by the 

output cells of the network is calculated by the formula 

in Equation 11. 

𝑦𝑖(𝑛) = 𝑓(𝑣𝑗(𝑛)) (11) 

The gradient of the network can be found by 

differentiating the error function according to the 

weights. According to the chain rule, the gradient can 

be expressed as: 

𝜕𝐸(𝑛)

𝜕𝑤𝑗𝑖(𝑛)
=

𝜕𝐸(𝑛)

𝜕𝑒𝑗(𝑛)

𝜕𝑒𝑗(𝑛)

𝜕𝑦𝑗(𝑛)

𝜕𝑦𝑗(𝑛)

𝜕𝑣𝑗(𝑛)

𝜕𝑣𝑗(𝑛)

𝜕𝑤𝑗𝑖(𝑛)
 (12) 

If individual derivatives are taken, 

𝜕𝐸(𝑛)

𝜕𝑤𝑗𝑖(𝑛)
= −𝑒𝑗(𝑛)𝑓(𝑣𝑗(𝑛))𝑥𝑖(𝑛) (13) 

The weight correction amount is applied according to 

the delta rule 𝚫w𝒋(𝒏). 

∆𝑤𝑗𝑖(𝑛) = −η
𝜕𝐸(𝑛)

𝜕𝑤𝑗𝑖(𝑛)
 (14) 

𝜼 is the learning rate. The − sign in Equation 14 

represents the steep descent in the weight space. Thus, 

the weight correction amount for the back-propagation 

algorithm is expressed as in Equation 15. 

∆𝑤𝑗𝑖(𝑛) = η𝛿𝑗(𝑛)𝑥𝑖(𝑛) (15) 

The local gradient 𝜹(𝒏) is defined as given in Equation 

16 (Arı and Berberler, 2017). 

𝛿𝑗(𝑛) = 𝑒𝑗(𝑛)𝑓′(𝑣𝑗(𝑛)) (16) 

For any j neurons in the hidden layer, the desired 

output value is not specified, as are the neurons in the 

output layer. For this reason, the error value of a 

hidden j neuron will be affected by the error value of 

all neurons directly connected to that neuron. For any 

neuron j in the hidden layer, the local gradient 𝛿𝑗 (𝑛) is 

defined as in Equation 17 (Arı and Berberler, 2017): 
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𝛿𝑗(𝑛) = 𝑓′(𝑣𝑗(𝑛)) ∑ 𝛿𝑗(𝑛)𝑊𝑗𝑖(𝑛)

1

𝑗=0

 (17) 

By adding the momentum term 𝛼 to the weight update 

equation of the back-propagation algorithm by 

Rumelhart et al. (1986), the probability of the mesh 

being stuck at the local minimum is reduced. After 

adding the momentum term, the weight update 

equation became as seen in Equations 18 and 19 (Arı 

and Berberler, 2017): 

𝑤𝑗𝑖(𝑛 + 1) = 𝑤𝑗𝑖(𝑛) + ∆𝑤𝑗𝑖(𝑛)   (18) 

∆𝑤𝑗𝑖(𝑛) =  η𝛿𝑗(𝑛)𝑥𝑖(𝑛) + 𝛼∆𝑤𝑗𝑖(𝑛) (19) 

The learning methods used to include the training set 

in the calculation in the back-propagation algorithm 

are divided into two groups as single (online) and 

batch training methods. Updating the weights in single 

training is provided by back propagation of the error 

that occurs when each sample in the training dataset is 

applied to the network. In collective training, it is 

possible to update the weights by back propagation of 

the average error obtained after the entire training data 

set is applied to the network. While collective training 

can be parallelized, individual training cannot be 

parallelized (Haykin, 2009). 

Heuristic approaches are used to reduce training times. 

Heuristic approach techniques, which are one of the 

few techniques to speed up convergence and improve 

the performance of the network in the back-

propagation algorithm, are made using the momentum 

coefficient. The momentum coefficient is a factor that 

helps the ANN recover faster. It is basically based on 

the principle of adding a portion of the previous 

exchange to the traded exchange. Momentum 

coefficient not only allows the network to exceed local 

gradients, but also helps to reduce the error (Bayındır 

and Sesveren, 2008). 

The learning rate (𝜼) is a constant that controls and is 

proportional to the speed and accuracy of a learning 

procedure. The learning rate is used to change the 

weights of the ANN. If the learning rate is chosen too 

large, wide jumps occur in the error level, narrow areas 

where learning will take place can be skipped. Also, 

movements across the fault surface become very 

uncontrolled. If it is selected too small, the learning 

time may take a lot of time. Experience shows that the 

learning rate chosen in the range of 0.01≤η≤0.9 gives 

good results. A large learning rate may lead to good 

results initially, but may lead to incorrect results later 

on. Using a smaller learning rate is more time 

consuming, but the result is clearer. Thus, in the 

learning process, the learning rate should be chosen 

large at the beginning and reduced over time (every 

iteration or every few iterations) (Kriesel, 2007). The 

reduction of the learning rate over time is called decay. 

Estimated Calorific Values of Kütahya-Gürağaç 

Lignite Field 

While the ash, moisture and calorie analysis results on 

the cores obtained from the drilling works were 

evaluated in the field coal seam modeling, it was 

determined that there was no calorific value in some 

analysis results. Although calorific values were 

determined by considering different solution methods, 

estimations were tried to be made with a maximum of 

85% R2 values. It was decided to detect unknown 

calorific values by using artificial neural networks in 

order to determine higher R2 values and values closer 

to real calorific values. 

By using the analysis results of ash, moisture and 

calorific values from 587 samples obtained from the 

field in concern, the artificial neural network was 

trained and as a result of the training, the calorific 

values were estimated as a result of 1401 analysis with 

only depth, ash and moisture values, but no calorific 

values. 

Depth, ash and humidity values used as input variables 

before the mesh was formed were normalized between 

0 and 1 for all values given in Table 1. Again, the 

normalization of the target variable, the calorific 

values, was also carried out. Normalized input and 

target variable matrices are transposed. Input and 

target matrices were formed as [3x587] and [1x587], 

respectively. 

Normalization was performed in the estimation matrix, 

which has 1401 data whose calorific values are 

unknown, and then the matrix of [3x1401] was 

obtained by taking the transpose. As a result of all 

these processes, input data of [3x587], target data of 

[1x587] and prediction data of [3x1401] were 

prepared. 

Table 1. Values used in Normalization of Data.  

 
Depth (m) 

Humidity 
(%) 

Ash (%) 

Real Cal. 

Value 

(Kcal/kg) 

Minimum 35 7,7 2,4 506 

Maximum 185,26 34,5 80,29 5890 

Max.-Min. 150,26 26,8 77,89 5384 

1/(Max.-Min.) 0,006655131 0,037313433 0,012838619 0,000185736 

These prepared data sets were fed to the MATLAB 

program to be used in the neural network to be created. 

Training was carried out on MATLAB using 8 neurons 

in the hidden layer and Levenberg-Marquardt 

algorithm as a trainer. 70% of the input and target data 

with 587 data were used for training, 15% for 

validation and 15% for testing. 

Network training was performed with the training 

parameters shown in Figure 4 and as a result of the 

training (Figure 5), R=0.982 for training, R= 0.985 for 
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validation, and R=0.991 for testing were obtained 

(Figure 6). However, since the regression did not 

converge at the desired value (1e-07), the network was 

re-run by changing the number of neurons. 

 

Fig. 4 ANN Training Parameters 

 
 

Fig. 5 ANN Network Training Simulation with 8 Neurons. 

 

 

 

Fig. 6 Neuron Network Training Outputs. 

The network training study was carried out using 10 

neurons in the hidden layer with the same training 

parameters (Figure 7), and the artificial neural network 

with 10 neurons converged at the determined value 

(1e-07), and the training was completed as a result of 

271 iterations. As a result of the training, the 

relationship between training, validation and test data 

was formed as in Figure 8. 

 

Fig. 7 ANN Network Training Simulation with 10 Neurons. 
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Fig. 8 Neuron Network Training Outputs. 

In order to compare the calorific outputs of the neural 

network with 10 neurons with the real calorific 

outputs, inverse normalization was applied to the data 

output from the system. The actual calorific values of 

587 analysis results and the calorific values obtained 

were overlapped (Figure 9). When the registration 

graph is examined, it is seen that the system makes 

estimations very close to the actual calorific values. It 

was determined that there is a very strong relationship 

such as R2=0.97 between the Real Calorific values and 

the Estimated Calorific values. 

 

 
Fig. 9 Comparing Actual Calorific Values with Estimated Calorific 

Values. 

After this stage, simulation was carried out for the 

trained network to produce calorific value in response 

to the analysis results whose calorific values are 

unknown. The calorific values produced by the 

network as a result of the simulation were added to the 

estimation data by inverse normalization. The table 

created for some calorific values was realized as in 

Table 2. All necessary data set for Kütahya-Gürağaç 

lignite field modeling is ready with the estimated 

calorific values with 97% probability. 

Table 2. Calorific Values Estimation of Some Drilling Points with 

Unknown Calorific Values after Simulation.  

No of 
Drill 

Depth (m) Moisture 
(m) 

Ash (%) Estimated 
Cal. Val. 

(Kcal/kg) 

365 22,75 35,00 26,28 4848 

408 55,00 18,50 47,24 2783 
415 14,40 20,00 24,48 3844 

491 37,80 29,00 16,28 5266 
631 93,40 4,63 51,30 2309 

758 13,50 8,00 15,80 5467 

774 45,65 22,40 38,70 3293 
803 13,50 22,00 39,20 3524 

806 45,82 35,00 24,74 5096 

832 32,60 15,00 24,96 4639 
848 60,05 33,26 37,71 4140 

1519 69,30 16,30 69,64 1240 

2340 19,00 11,00 85,30 748 

2405 10,65 16,30 56,32 1800 

2578 36,50 15,00 57,38 2076 

3085 81,25 17,60 29,80 4396 

Conclusion 

Coal field sample analysis results can be predicted 

quite successfully with artificial neural networks. With 

the artificial neural network created for the Kütahya-

Gürağaç lignite field, the unknown calorie values were 

successfully estimated at a rate of 97% using known 

depth, ash and humidity values. 
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