Journal home page: www.econ-environ-geol.org

ISSN: 2223-957X

The Effects of Industrial Value Addition and Energy Consumption on Environmental Deterioration: New Evidence from Islamic Countries

Rehmat Karim^{1,2}, Faqeer Muhammad¹, Javed Akhtar Qureshi¹, Normah Abdul Latip², Azizan Marzuki², Memoona Nilofar¹

¹Karakoram International University, Gilgit-Baltistan, Pakistan ²School of Housing, Building and Planning, Universiti Sains Malaysia

*Email: rehmat@kiu.edu.pk

Received: 24 December, 2019

Accepted: 18 March, 2020

Abstract: The current research is aimed at finding out the effects of energy consumption and industrial value addition on environmental deterioration. Panel data for the years 2000-2017 was employed to explore the long- and short-term association of variables for the selected Islamic countries. Panel Unit Root Test was used to check the stationarity of the data. Moreover, Fisher panel Co-integration tests, PMG, Fully Modified Ordinary Least Square (FMOLS) and Dynamic Ordinary Least Square method (DOLS) were also applied to find out relationship between the variables. The study suggested that economic growth, industrial value addition and energy consumption positively affect the CO₂ emission. Moreover, high-energy consumption to meet the demands of energy in transportation and production sectors leads to increased environmental pollution. The coefficient of industrial value addition shows significant effect on environmental deterioration in long term. Our study suggests the use of cleaner technology in production system and replacing renewable energy by non-renewable energy sources.

Key words: Energy, consumption, industrial value addition, environment, deterioration.

Introduction

After the industrial revolution, majority of countries struggled for economic growth which environmental pollution. Industrialization development damaged environment because of over exploitation of natural resources, emission of pollutants from industries, inefficient and poor technology, ignorance and lack of awareness. Many Islamic countries are vulnerable to environmental challenges due to their growing economies. Majority of them are struggling to improve economic conditions by industrial expansion and exports. The current study aims to investigate the relationship between industrial value addition, energy consumption on environmental deterioration in selected Islamic countries (Bangladesh, Bahrain, Egypt, Indonesia, Iran, Jordan, Kazakhstan, Malaysia, Morocco, Nigeria, Pakistan, Tanzania and Turkey). Jamel and Derbali (2016) highlighted the pivotal relationship between environmental deterioration and economic activities which show badly affect the ecosystem due to over industrialization. Cherniwchan (2012) used two sector models to examine the impact or changes of economic shift from agriculture to industrialization on environment quality (sulfur dioxide emission). The result revealed that industrialization is a significant factor for environmental problems as the economic growth from agriculture to industrialization and, increase in scale of production cause pollution.

Nnaji et al., (2013) studied the association among variables such as CO₂ emission and energy consumption with other determinant by taking the time period of 1971-2009 in Nigeria by using Bound test method. Results showed significant positive relationship between

 ${\rm CO_2}$ emission and fossil fuel consumption. Jamel and Derbali (2016) conducted a study to observe the influence of energy use on environmental degradation over the period of 1991-2013 for eight Asian countries. The result revealed the significant effect of energy consumption on environmental pollution. ${\rm CO_2}$ emission increases when energy consumption increases (Shahbaz, et al., 2011). A similar study was also conducted by Ali et al., (2015) supporting the long run relationship among variables, but rejected in short run relationship.

Islam et al., (2013) conducted a study in context of Bangladesh, which shows that major contributor of CO₂ emission is energy consumption. Tiwari (2011) suggested green growth for economic development by applying Engle-Granger approach in VECM framework. The result revealed that economic growth causes environmental degradation in the long run. Shafik and Bandopadhyay (1992) found a vital relationship between economic growth and several ecological value indicators. The quantity of sulphur dioxide, fecal coliform and suspended particulate matter is increased as income level increases and then decreased as income reaches a certain level. According to Suri and Chapman (1998) industrialization and energy consumption lead to environmental degradation. Acar and Tekce (2014) examined the effects of industrial value addition on CO2 emission for Mediterranean countries.

Materials and Methods

For empirical investigation this study has initially used panel unit root tests to identify the order of the integration of the variables. In second stage, long run relationship has been explored by using Johansen Cointegration test. Later Fully Modified Least Square (FMOLS) is used after confirming the long run association between the variables. This method looks into the endogeneity in regressors arises from existence of Cointegration (Ahmad, et al., 2013). In addition, this paper also utilizes DOLS to examine the effect of energy consumption and industrial value added on environmental loss. Finally, for robust analysis this paper uses PMG.

The proposed model of the study is given below.

$$ED= f (GDP, EG, IVA)(1)$$

Where ED is the environmental deterioration; and GDP, EG, IVA represent per capita economic growth, energy consumption and industrial value addition respectively. present study examined the influence of economic growth (GDP per capita) and energy consumption (EG) on environmental deterioration (CO₂ emission) by incorporating a new variable industrial value addition (IVA). Alternatively, equation (1) can be written as;

$$CO_{2t} = \beta_0 + \beta_1 GDP_{it} + \beta_2 EGit + \beta_3 IVA_{it} + \mu_{it} \dots (2)$$

Where CO_2 represents carbon dioxide emissions per capita, GDP represents GDP per capita, EG represents energy consumption, IVA represent industrial value addition, β_o relates to the constant and μ denotes the error term.

Table 1 Variables description.

Variables	Description of the variables	Source of the data
CO_2	Carbon dioxide emission	World Development
		Indicators
EG	The proxy for energy	World Development
	consumption is energy use (kg	Indicators
	of oil equivalent) per \$ 1000	
	GDP (constant 2011 PP)	
IVA	Industry value added (constant	World
	2010 US \$	Development
		Indicators
GDP	GDP per capita in constant	World Development
	2010 US \$	Indicators

This study acquired data from World Development Indicators (WDI) covering the time from 2000 to 2017 for the selected Islamic countries (Bangladesh, Bahrain, Egypt, Indonesia, Iran, Jordan, Kazakhstan, Malaysia, Morocco, Nigeria, Pakistan, Tanzania and Turkey) were used to carry out the study. The CO₂ emission is used as dependent variable for the study whereas energy consumption in production and in manufacturing process (metric tons per capita) are used as independent variables (World Bank, 2018). The independent variables are GDP per capita (constant 2010 US\$), industry value added (constant 2010 US\$) and energy consumption (kg of oil equivalent) per \$1,000 GDP (Ali, 2015).

Results and Discussion

The result of panel unit root test indicates that all variables are non-stationary at level. However, at first difference all the variables are found to be stationary and thus, it was concluded that all variables, under

consideration, are integrated to order one.

Table 2 Results of panel unit root tests.

Var.	LLC	IPS	ADF Fisher	PP Fisher
CO	-0.94417	1.05560	17.4257	25.0960
CO_2	(0.1725)	(0.8544)	(0.8957)	(0.5135)
100	-3.45704	-3.80211	59.7765	146.785
ΔCO_2	(0.0003)	(0.0001)	(0.0002)	(0.0000)
IVA	-0.14057	1.44445	23.2626	62.4149
IVA	(0.4441)	(0.9257)	(0.6180)	(0.0001)
ΛIVA	-3.78423	3.20131	51.3354	89.0199
ΔΙνΑ	(0.0001)	(0.0007)	(0.0022)	(0.0000)
EG	0.04015	2.44440	8.84569	16.5190
EG	(0.5160)	(0.9927)	(0.9993)	(0.9229)
ΛEG	-5.46398	-4.91188	71.2938	161.223
ΔEG	(0.0000)	(0.0000)	(0.0000)	(0.0000)
GDP	1.73430	3.27880	19.1099	27.9227
GDP	(0.9586)	(0.9995)	(0.8318)	(0.3623)
ΛGDP	-1.64685	-1.93445	37.9457	80.9466
ΔGDP	(0.048)	(0.0265)	(0.0613)	(0.0000)

According to the result of Fisher Cointegration test, there exists Cointegrating relationship between variables under consideration, as the null hypothesis of no Cointegration has been rejected.

Table 3 Johansen-fisher panel co-integration test results.

	(trace test)	Prob.	(max-eigen test)	Prob.
None	413.2	0.0000	352.0	0.0000
At most 1	151.3	0.0000	131.2	0.0000
At most 2	49.94	0.0014	47.41	0.0030
At most 3	30.33	0.1741	30.33	0.1741
At most 4	413.2	0.0000	352.0	0.0000

Fully modified OLS results for effect of industrial value addition, economic growth and energy consumption on environmental deterioration show that growth has significant and positive impact on carbon emission in Islamic countries. It further reveals that 1% increase in income (GDP) will cause .000813 % increase in carbon emission. A positive relationship found between energy consumption and environmental degradation implying 0.013288 % CO₂ emission owing to 1 % increase in EG (energy consumption) while 1 % increase in IVA cause 0.209021% increase in CO₂ emission and a positive sign shows a significant impact.

Table 4 DOSL and FMOLS results

Variables	DOLS		FMOLS	
	Coefficient	Probability	Coefficient	Probability
EG	0.018162	0.0003	0.013288	0.006
IVA	0.137291	0.7828	0.209021	0.6188
GDP	0.001006	0.0000	0.000813	0.0000

Robust Analysis

Lastly, the present research utilizes PMG test for robust analysis. In consistent with the outcomes of the FMOLS and DOLS, the results of the PMG have shown the long run association between the variables of the study. On

the other hand, the value of the Cointegrating equation term is around -0.293, which shows that speed of adjustment, is 29%. In sum, the findings of the panel data techniques depict a long run relationship among the variables.

Table 5 Robust analysis results.

Variable	Coefficient	t-statistics	Probability	
Long Run results				
EG	0.035804	8.435701	0.0000	
LNIVA	0.446698	4.277596	0.0000	
GDPC	0.000296	8.893340	0.0000	
Short Run result				
COINTEQ01	-0.292799	-3.559274	0.0005	
D(EG)	0.016982	1.646254	0.1023	
D(IVA)	1.726096	0.813618	0.4175	
D(GDPC)	0.000569	2.197445	0.0299	

The result depicts that 1% increase in GDP causes 0.035804% CO_2 emission. The positive relationship shows an increase in CO_2 emission due to increased economic growth. While the results show that industrial value addition has minimum significant value but it influences the environmental deterioration in Islamic countries. There is substantial impact of coal, gas and oil consumption which directly cause environmental deterioration in the form of CO_2 emission. Production of goods in industry such as cement, iron, chemicals and petroleum lead to more exploitation of energy, which in turn causes CO_2 emission.

Conclusion

The research established the co-integration among the four economic factors such as CO₂ emission, GDP per capita, energy use and industrial value addition. The long run result reveals a significant positive relationship between the given parameters showing that increase in per capita GDP and CO₂ are positively correlated. Demands of energy in transportation and production sectors lead to increase environmental degradation which a positive correlation between consumption and CO2 emission. The coefficient of industrial value addition shows a positive and statistically significant effect on environmental degradation, in the long term. These developing countries are in a transition state of development which leads to environmental degradation. Due to economic development and industrial production, which use nonrenewable energy sources, but after a threshold level of income, the quality of environment improves because of willingness to pay and awareness about health and environment. This study recommends using cleaner or green technology for industrial development using renewable energy sources, and environmental taxes on CO₂ emission for achieving sustainable goals of development without degrading the environment.

References

Acar, S., Tekce, M. (2014). Economic development and industrial pollution in the Mediterranean region: a panel data analysis. Topics in Middle *Eastern and African Economies*, **16** (1), 65-95.

- Ahmad, N., Iqbal, A., Mahmood, H. (2013). CO emission, population 2 and industrial growth linkages in selected south Asian countries: A cointegration analysis. World Applied Sciences Journal, 21 (4), 615-622.
- Chapman, G. B. (1998). Similarity and reluctance to trade. *Journal of Behavioral Decision Making*, **11**(1), 47-58.
- Cherniwchan, J. (2012). Economic growth, industrialization, and the environment. *Resource and Energy Economics*, **34** (4), 442-467.
- Islam, F., Shahbaz, M., & Butt, M. S. (2013). Is there an environmental Kuznets curve for Bangladesh? Evidence from ardl bounds testing approach. *The Bangladesh Development Studies*, 1-23.
- Jamel, L., Derbali, A. (2016). Do energy consumption and economic growth lead to environmental degradation? Evidence from Asian economies. *Cogent Economics & Finance*, **4** (1), 1-19.
- Nnaji, C. E., Chukwu, J. O., Nnaji, M. (2013). Electricity Supply, Fossil fuel consumption, CO₂ emissions and economic growth: Implications and policy options for sustainable development in Nigeria. International Journal of Energy Economics and Policy, 3 (3), 262-271.
- Shafik, N., Bandyopadhyay, S. (1992). Economic growth and environmental quality: time- series and cross-country evidence (Vol. 904). World Bank Publications.
- Shahbaz, M., Lean, H. H., Shabbir, M.S. (2011). Environmental Kuznets curve and the role of energy consumption in Pakistan. *Development Research Papers*, **10** (5), 1-33.
- Suri, V., Chapman, D. (1998). Economic growth, trade and energy: implications for the environmental Kuznets curve. Ecological economics, **25** (2), 195-208.
- Tiwari, A. K. (2011). Energy consumption, CO_2 emissions and economic growth: Evidence from India. Journal of International Business and Economy, **12** (1), 85-122.
- World Bank (2018). https://data.worldbank.org/. (accessed on 10 June, 2019).