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Abstract: The key factor behind raw mix design in the cement factory is the appropriate production planning, resulting 
in high-quality raw material. Quarry managers usually come up with uncertainty-related raw materials due to variations 
in chemical composition. These uncertainties required efficient planning in terms of useful insight into this problem.  
This research provides a detailed explanation of scenario analysis of raw materials used in cement manufacturing using 
Monte Carlo simulation (MCS) and indices. Scenario analysis is used to predict the possibility of best, worst and most 
likely cases of raw material’s quality. Whereas, Monte Carlo simulation is used to evaluate the inherent uncertainty 
associated with chemical composition values in order to analyze the impact of truly unpredictable scenarios. The 
predictive results help in decisions related to production planning, raw mix design optimization and increasing the 
probability of designing the best plan. 
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Introduction  

The raw materials commonly used in cement 
production are limestone, slate, shale, laterite, clay and 
marl. (Ali and Shah, 2008). The cement production 
process involves complex operations starting with raw 
material extraction from the quarry. Raw material 
extraction from quarry comprise a sustained supply of 
raw material meeting the quality and quantity 
requirement (Asad, 2010). Planning and operating 
cement quarry with optimal production of raw material 
is associated with challenging issues due to inherent 
uncertanity related to chemical composition and 
sufficient quality and quantity of raw material 
(Rehman and  Asad, 2010; Shah and Rehman, 2016; 
Shah and Rehman, 2020). 

The main constituent used in the cement production 
process is limestone. It contains oxides such as lime 
(CaO), silica (SiO2), Alumina (Al2O3), iron (Fe2O3) 
and magnesium (MgO) in various quantities (Ali and 
Shah, 2008). The percent content of oxides varies 
around the quarry and across different quarries. The 
clinker quality depends on the provision of optimal 
raw material in terms of quality and quantity to ensure 
the quality of the end-product. The optimal quality 
ensures that the raw material constituents with oxides 
are within a specific range (Rehman and Asad, 2010). 
Generally, different grades of raw material within the 
quarry are blended to meet the raw mix required for 
the kiln meal. An efficient blending process can be 
achieved through proper proportioning to obtain good 
homogeneity to ensure appropriate burnability, plant 
efficiency and final product quality (Asad, 2011; 
Chatterjee and Kumar, 2018). Therefore, the blending 
of raw material with adequate quality and quantity of 
oxides is essential for the cement manufacturing 
process. Supplementary materials if required, are 

provided from the market such as laterite, clay, fly ash, 
slate, gypsum and sandstone. Proper sampling and 
chemical analysis are essential to achieve the 
uniformity and homogeneity of the raw mix for kiln meal 
(Asad, 2011). Quarry managers usually face uncertainty 
related to raw materials due to variation in chemical 
composition. These uncertainties required efficient 
planning for useful insight into this problem.  Monte 
Carlo simulation is mostly used to achieve the final 
cement product, and fulfilling the quality and quantity 
the percentage of various oxides (Silica (SiO2),calcium 
(CiO) iron (Fe2O3) and alumina (Al2O3)). To achieve 
the quality of the final product following indices are 
used given in Equations 1, 2 and 3 (Asad, 2010). 
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Lime saturation factor (LSF) =
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Alumina ratio(AM) = Al O
Fe O

              (3) 

The quality of the end-product is also based on the 
provision of major oxides within the specific limit 
(silica (14-15%), calcium (40-42%), alumina (2.7-
3.4%) and iron (1.65-2.17%)). After the burning of raw 
material, the clinker contains compounds such as alite 
(C3S) (30-35%), belite (C2S) (15-20%), celite (C3A) 
(6-8%) and brownmillerite (C4AF) (4-9.6%) (Asad, 
2010).  

3 2 2 3 2 34.017 7.6 6.718 1.43C S CaO SiO Al O Fe O= × − × − × − ×  (4) 

2 2 2 3 2 33.071 8.6 5.068 1.079C S CaO SiO Al O Fe O= × − × − × − ×   
(5) 

3 2 3 2 32.65 1.692C A Al O Fe O= × − ×               (6) 

4 2 33.043C AF Fe O= ×                (7) 
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Equations 4, 5, 6 and 7 are also employed to ensure the 
balance of the major oxides. 

Bao et al. (2019) developed a novel algorithm to 
determine the chemical composition of raw material in 
the quarry. Chatterjee et al. (2015) employed a 
sequential branch and cut method to model production 
planning for limestone quarry while keeping quality 
and quantity requirements. Joshi et al. (2015) presented 
a long-term production planning with a consistent 
quality and quantity supply of raw material and used 
the branch-and-cut algorithm to generate a production 
sequence. Asad (2011) presented a quarry, production 
scheduling model to ensure the sustained supply of the 
raw material from the quarry. Rehman and Asad 
(2010) developed a mixed-integer linear programming 
(MILP) model to optimize the raw material blending, 
ensuring the objective of cost-saving while meeting the 
required quality and quantity. Almeida (2010) used a 
joint simulation (CoDSS) and direct sequential 
simulation (DSS) algorithm to evaluate the distribution 
of the local factors indices using geostatistical images. 
The presented literature, however, offers insight into 
the cement raw material production planning, but 
scarce with uncertainty incorporation. Jones et al.  
(2013) used multiple pint statistics (MPS), an 
emerging spatial simulation framework to evaluate the 
high-order spatial relationship. MPS uses training 
images to assess the volumetric and geological 
uncertainty that can be used for the calculation of 
grade uncertainty and the uncertainty related to entire 
deposit. Vu et al. (2020) assessed the geological 
uncertanity related to cement raw material based on 
hierarchical simulation. 

Materials and Methods 

In this study, Monte Carlo simulation was employed to 
predict the effect of major oxides on indices values, 
preceding the raw mix design. The chemical 
composition of limestone dust samples was obtained to 
carry out scenario analysis. In this analysis best fit 
probability distributions were analyzed and generated 
through software package Microsoft Excel and 
SimulAr, followed by computation of the number of 
scenarios using Monte Carlo simulation and indices 
formulas to analyze the factors (LSM, AM and SR). 
After that, the results of the factors are estimated for 
each scenario. Finally, the best, most frequent and 
worst scenarios are estimated on the basis of optimum 
values of the factors using linear programming 
formulation (Fig. 1). 

In the initial step, the decision-making scenario is 
completely represented through a mathematical model. 
In the first step, describe the problem and distinguish 
the input and output variables. Next, determine the 
precise relationship between input and output variables 
and finally, creating a mathematical model using a 
spreadsheet.  The second step involves uncertainty 
identification-related input variables that are 
significant for making a decision. Uncertanity is 

modeled by specifying the most likely probability 
distribution for the decision variables. In the third step, 
the model is simulated with hundreds or thousands of 
iteration (combination) of input variables. These 
combinations are randomly selected from the 
predefined distribution of input variables. These 
simulations result in potential outcomes and their 
distributions are obtained. From the simulation results 
and obtained distributions in the third step, the quarry 
manager may able to choose the best course of action. 
Therefore, simulation results also provide an effective 
understanding related to resource allocation. 

 
Fig. 1 Framework for the prediction of the best and worst scenario. 

In this study a detailed application of scenario analysis 
is presented in cement raw material production 
planning using data from FECTO cement, located 
about 1.6 km north of the Sangjani, Islamabad, 
Pakistan. The clinker production capacity of FECTO 
cement is 2600 tons/day. The required raw material is 
transported from limestone dust stocks produced by 
crushing of limestone for aggregate production 
because the Capital Development Authority (CDA) 
banned the quarry operation at Margalla hills.  

During planning for raw mix design, scenario analysis 
is used to find out the best, worst and most likely case 
scenarios possibility. From the projection of 
distribution, the likelihood of best, worst and most 
likely results of LSF, SR and AM is observed. This 
case study is aimed to find the effect of variation in 
major oxides on the LSF, AM and SR or Raw mix 
design. For the Monte Carlo simulation, the data given 
in Tables 3.1, 3.2 and 3.3 were used. Monte Carlo 
simulation uses random numbers to generate random 
data. 

Results and Discussion 

The percent content of oxides obtained from chemical 
analysis of the limestone dust samples is used to 
estimate the descriptive statistics and evaluate the best 
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fit probability distributions. Probability and frequency 
distribution is a reliable approach to explain the trend 
of the data. The statistics of the major oxides are 
provided in Table 1, and the probability distributions 
plots are presented in Fig. 2.  

Table 1. Summary of major oxides and MgO descriptive statistics. 

Statistics SiO2 Al2O3 Fe2O3 CaO MgO K2O 

Sample size 30 30 30 30 30 30 

S D 4.77 1.32 0.646 3.746 1.51 0.144 

Average 7.359 1.62 0.851 49.086 1.123 0.211 

Skewness 1.5 1.59 1.40 -1.35 5.49 0.910 

Kurtosis 2.28 2.5 0.86 1.22 30.91 0.29 

Mode 9.09 1.76 0.30 9.17 0.79 0.02 

Median 6.31 1.19 0.62 6.29 0.791 0.161 

Mean 7.34 1.51 0.85 7.29 1.18 0.220 

Confidence 
level 95% 95% 95% 95% 95% 95% 

Based on the goodness of fit test, distributions 
followed by major oxides are SiO2 (largest extreme 
value), CaO (smallest extreme value), Fe2O3 
(lognormal), Al2O3 (Weibull), K2O (Weibull) and 
MgO (Weibull) (Fig. 4).  

 

Fig. 2 Probability distributions of major oxides and MgO of 
limestone dust. 

Monte Carlo simulation is used to model sample data 
using indices formulas given in Equations 1, 2, and 3 
to address the possible best, worst and most likely case 
scenarios for raw mix design. Indices parameters 
(major oxides) are used to achieve the statistical 
models of indices. The existing data are simulated up 

to 500 alterations using Monte Carlo simulation. The 
results from the simulation were used to find out the 
possible scenarios and possible indices that require raw 
material blending to fulfill the quality requirements. 

From the scenario analysis, it is revealed that about 
35.4% of scenarios are best-case scenarios and 41.6% 
are worst case, while 23 % are most likely case 
scenarios. The results of the predictive values of 
indices in percentage are given in Table 2.  

Table 2. Percentage and probability of predictive values in the range. 

Indices Values in Range Probability 
LSF 82% 0.82 
AM 58.4% 0.584 
SR 52.1% 0.521 
C2S 89.5% 0.895 
C3S 83% 0.83 

C4AF 95.8% 0.958 
MgO 60.4% 0.604 
C3A 60.4% 0.604 

 

 

Fig. 3 Frequency distribution of major oxides and MgO of shale. 

It is predicted that limestone dust used for cement 
manufacturing in this case study is of average quality 
using scenario analysis. It is suggested to fulfill the 
CaO for quality requirement using high-quality 
limestone with limestone dust as a raw material. 
Laterite with low MgO content < 10% should be 
provided to maintain MgO content up to an acceptable 
level. Similarly, to keep silica at a smooth level, shale 
with high silica content should be provided. Hence 
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preceding to raw mix design using Monte Carlo 
simulation for scenario analysis, can help in the 
decision about production planning. 

 

Fig. 4 Histogram of the observed distribution of major oxides and 
MgO of laterite. 

In this study short-term production planning is done 
based on the optimized raw mix which is designed to 
find the optimum short-range production plan for this 
case study. The optimum production plan should 
ensure the stockpile capacity of 26000 tons. The cost 
of limestone dust and additives acquired from the 
market is given in Table 3. 

Table 3. Purchased cost and required quantity limits of the raw 
material. 

Raw material Purchased Cost 
($/ton) 

Required quantity (tons) 
Minimum Maximum 

Limestone D 1 0.8 0 20,000 
Limestone D 2 0.85 0 20,000 
Limestone D 3 0.9 0 20,000 

Shale PC 0.66 300 6000 
Laterite-I 2.42 10 1500 

The variation in the purchasing cost of limestone dust 
is due to variation in transportation cost because the 
raw material is transported from various locations. 
Manual planning involves a trial and error approach 
which is impractical in this case study and also may be 
time-consuming. Linear programming (LP) model 
indices are used to achieve optimum blending. Excel 
solver was used to developing an LP model. Linear 
programming-based optimization ensures the required 
quality and quantity of raw material for blending at 
minimum cost. Therefore, two optimized scenarios are 
presented out of 500 scenarios to evaluate the 
applicability of the proposed approach. The purchasing 

cost of raw material for scenario-I is 19285 dollars and 
for scenario-II is 19265 dollars given in Table 4. 

Table 4. Raw material and their optimum cost for scenario-I and II. 

Raw material Sample 
Raw material (tons) 

Scenario-I Scenario-II 
Limestone D 1 N 9 19,150 18,961 
Limestone D 2 NE 09 0 0 
Limestone D 3 NE 9 0 0 

Shale PC SPC 5,670 5,855 
Laterite-1 935 170 174 

 overall cost ($) 19285 19265 

Scenario analysis revealed that scenario-I and 
scenario-II provide 19150 tons and 18961 tons of raw 
material to fulfill the stockpile requirement. The 
optimum values of the indices of both scenarios are 
given in Table 5. Therefore, the optimum planning 
ensures the maximum use of limestone dust to avoid 
the maximum additives purchased from the market. 

Table 5. Quality parameters of raw material blending in scenario-I 
and II. 

Quality Parameters Lower 
 limit 

Upper 
limit 

Optimized 
values for 
Scenario-I 

Optimized 
values for 

Scenario-II 
Silica ratio (SR) 2.5 2.9 2.66 2.6 

Alumina modulus (AM) 1.5 1.8 1.80 1.80 

Celite (C3A) 6 8 6.22 6.37 

Alite (C3S) 30 35 30.75 32.7 

Belite (C2S) 15 20 20.00 20.00 

Brownmillerite (C4AF) 4 9.6 6.15 6.29 

Lime saturation factor 
(LSF) 0.86 0.97 0.89 0.86 

Magnesium oxide (MgO) 1% 2% 1.15 1.17 
Required raw material 

(tons) 25,000 30,000 25,000 25,000 

 

The cement industry in Pakistan usually used 73% 
limestone, 23% clay and 2% laterite to manufacture the 
final product of cement. In the case of FECTO cement 
85% limestone dust, 9% shale and 6% laterite  are used 
to meet the kiln need. By using the proposed approach 
for FECTO cement the results revealed that 77% 
limestone dust, 22% shale and 1% laterite for scenario-
I, while for scenario-II, 76% limestone dust 23% shale 
and 1% laterite provides optimum raw material 
blending. The results also revealed that according to 
the chemical composition of raw material and 
additives, at an optimum cost the quantity of limestone 
varies from 76% to 90%, shale from 8% to 13% and 
laterite from 0.055% to 1.25% respectively. 

The difficulty in modeling the available raw material is 
the variation in chemical composition, where the 
limestone dust pile is an essential factor influencing 
the distribution. The design of the resource model 
without this relation may be unrealistic. In some places 
the laterite composition is extremely high that is 
unacceptable, while in some scenarios the CaO grade 
is lower that is unreasonable. Therefore, due to these 
variations, most of the scenarios deviate from the 
required quality. The quality deviation also provides a 
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better picture to understand the ground reality before 
quarry planning. In this study, a Monte Carlo 
simulation-based scenario analysis has been proposed 
to overcome the challenge related to uncertainty based 
on the chemical composition of raw material. The 
MCS reproduces the chemical composition based on 
their real-time chemical composition probability 
distribution. Despite this, there is some criticism on 
MCS, such as abominable contact relation among rock 
type and deficiency of image or simulation-based 
results.  

Conclusion 

Adequate production planning from the quarry and raw 
material purchased from the market has a key role in 
optimizing the raw material blending. The results of 
Monte Carlo simulation and scenario analysis 
presented in this paper induct standards that could 
assist FECTO cement managers in ascertaining the 
appropriate strategy for production planning. It is 
evident from the Monte Carlo simulation that 500 
scenarios are addressed for raw mix design using 
scenario analysis. The results revealed that 35.4% of 
scenarios exhibit the optimum values for indices 
fulfilling the quality and quantity requirements. Monte 
Carlo simulation not only randomly sample data but 
also cope with the uncertanity related to raw material 
chemical composition. Therefore, this approach 
ensures not only optimum raw material blending but 
also provides detailed background by prediction to 
choose ideal blocks for raw material extraction. The 
results revealed that these models and techniques help 
in better decision-making related to production 
planning of cement quarry operations.       
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