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Abstract: The key factor behind raw mix design in the cement factory is the appropriate production planning, resulting
in high-quality raw material. Quarry managers usually come up with uncertainty-related raw materials due to variations
in chemical composition. These uncertainties required efficient planning in terms of useful insight into this problem.
This research provides a detailed explanation of scenario analysis of raw materials used in cement manufacturing using
Monte Carlo simulation (MCS) and indices. Scenario analysis is used to predict the possibility of best, worst and most
likely cases of raw material’s quality. Whereas, Monte Carlo simulation is used to evaluate the inherent uncertainty
associated with chemical composition values in order to analyze the impact of truly unpredictable scenarios. The
predictive results help in decisions related to production planning, raw mix design optimization and increasing the

probability of designing the best plan.
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Introduction

The raw materials commonly used in cement
production are limestone, slate, shale, laterite, clay and
marl. (Ali and Shah, 2008). The cement production
process involves complex operations starting with raw
material extraction from the quarry. Raw material
extraction from quarry comprise a sustained supply of
raw material meeting the quality and quantity
requirement (Asad, 2010). Planning and operating
cement quarry with optimal production of raw material
is associated with challenging issues due to inherent
uncertanity related to chemical composition and
sufficient quality and quantity of raw material
(Rehman and Asad, 2010; Shah and Rehman, 2016;
Shah and Rehman, 2020).

The main constituent used in the cement production
process is limestone. It contains oxides such as lime
(Ca0), silica (SiOz), Alumina (Al;Os), iron (Fe20s3)
and magnesium (MgO) in various quantities (Ali and
Shah, 2008). The percent content of oxides varies
around the quarry and across different quarries. The
clinker quality depends on the provision of optimal
raw material in terms of quality and quantity to ensure
the quality of the end-product. The optimal quality
ensures that the raw material constituents with oxides
are within a specific range (Rehman and Asad, 2010).
Generally, different grades of raw material within the
quarry are blended to meet the raw mix required for
the kiln meal. An efficient blending process can be
achieved through proper proportioning to obtain good
homogeneity to ensure appropriate burnability, plant
efficiency and final product quality (Asad, 2011,
Chatterjee and Kumar, 2018). Therefore, the blending
of raw material with adequate quality and quantity of
oxides is essential for the cement manufacturing
process. Supplementary materials if required, are
provided from the market such as laterite, clay, fly ash,
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slate, gypsum and sandstone. Proper sampling and
chemical analysis are essential to achieve the
uniformity and homogeneity of the raw mix for kiln meal
(Asad, 2011). Quarry managers usually face uncertainty
related to raw materials due to variation in chemical
composition. These uncertainties required efficient
planning for useful insight into this problem. Monte
Carlo simulation is mostly used to achieve the final
cement product, and fulfilling the quality and quantity
the percentage of various oxides (Silica (SiO,),calcium
(CiO) iron (Fe203) and alumina (Al20s)). To achieve
the quality of the final product following indices are
used given in Equations 1, 2 and 3 (Asad, 2010).

Lime saturation factor (LSF) = : Ca0 (1)
2.80Si0, +1.18Al,0, +0.65Fe,0,
Silica ratio (SR) = __ S0, @)
Al,O, + Fe,0,
; . ALO
Alumina ratio(AM) =—%=2 3)
Fe,0,

The quality of the end-product is also based on the
provision of major oxides within the specific limit
(silica (14-15%), calcium (40-42%), alumina (2.7-
3.4%) and iron (1.65-2.17%)). After the burning of raw
material, the clinker contains compounds such as alite
(C3S) (30-35%), belite (C2S) (15-20%), celite (CsA)
(6-8%) and brownmillerite (C4AF) (4-9.6%) (Asad,
2010).

C,S =4017xCa0-7.6x5i0,~6.718x AL,O, ~1.43x Fe,0, (4)

C,S =3.071xCa0-8.6xSi0, -5.068x Al,0, ~1.079x Fe,0,

(5)
C,A=2.65x Al,0, ~1.692x Fe,0, (©)

C,AF =3.043x Fe,0, )
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Equations 4, 5, 6 and 7 are also employed to ensure the
balance of the major oxides.

Bao et al. (2019) developed a novel algorithm to
determine the chemical composition of raw material in
the quarry. Chatterjee et al. (2015) employed a
sequential branch and cut method to model production
planning for limestone quarry while keeping quality
and quantity requirements. Joshi et al. (2015) presented
a long-term production planning with a consistent
quality and quantity supply of raw material and used
the branch-and-cut algorithm to generate a production
sequence. Asad (2011) presented a quarry, production
scheduling model to ensure the sustained supply of the
raw material from the quarry. Rehman and Asad
(2010) developed a mixed-integer linear programming
(MILP) model to optimize the raw material blending,
ensuring the objective of cost-saving while meeting the
required quality and quantity. Almeida (2010) used a
joint simulation (CoDSS) and direct sequential
simulation (DSS) algorithm to evaluate the distribution
of the local factors indices using geostatistical images.
The presented literature, however, offers insight into
the cement raw material production planning, but
scarce with uncertainty incorporation. Jones et al.
(2013) wused multiple pint statistics (MPS), an
emerging spatial simulation framework to evaluate the
high-order spatial relationship. MPS uses training
images to assess the volumetric and geological
uncertainty that can be used for the calculation of
grade uncertainty and the uncertainty related to entire
deposit. Vu et al. (2020) assessed the geological
uncertanity related to cement raw material based on
hierarchical simulation.

Materials and Methods

In this study, Monte Carlo simulation was employed to
predict the effect of major oxides on indices values,
preceding the raw mix design. The chemical
composition of limestone dust samples was obtained to
carry out scenario analysis. In this analysis best fit
probability distributions were analyzed and generated
through software package Microsoft Excel and
SimulAr, followed by computation of the number of
scenarios using Monte Carlo simulation and indices
formulas to analyze the factors (LSM, AM and SR).
After that, the results of the factors are estimated for
each scenario. Finally, the best, most frequent and
worst scenarios are estimated on the basis of optimum
values of the factors using linear programming
formulation (Fig. 1).

In the initial step, the decision-making scenario is
completely represented through a mathematical model.
In the first step, describe the problem and distinguish
the input and output variables. Next, determine the
precise relationship between input and output variables
and finally, creating a mathematical model using a
spreadsheet. The second step involves uncertainty
identification-related input variables that are
significant for making a decision. Uncertanity is
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modeled by specifying the most likely probability
distribution for the decision variables. In the third step,
the model is simulated with hundreds or thousands of
iteration (combination) of input variables. These
combinations are randomly selected from the
predefined distribution of input variables. These
simulations result in potential outcomes and their
distributions are obtained. From the simulation results
and obtained distributions in the third step, the quarry
manager may able to choose the best course of action.
Therefore, simulation results also provide an effective
understanding related to resource allocation.

Percentage of major oxides

Distribution of major oxides

Randomly generated
oxides using MCS for

[r——
I=1ton

Multiple case scenario
analysis

Use LP formulation model

L

Worst scenario Most likely scenario Best_: scenario or
4 4 Optimal solution

Fig. 1 Framework for the prediction of the best and worst scenario.

In this study a detailed application of scenario analysis
is presented in cement raw material production
planning using data from FECTO cement, located
about 1.6 km north of the Sangjani, Islamabad,
Pakistan. The clinker production capacity of FECTO
cement is 2600 tons/day. The required raw material is
transported from limestone dust stocks produced by
crushing of limestone for aggregate production
because the Capital Development Authority (CDA)
banned the quarry operation at Margalla hills.

During planning for raw mix design, scenario analysis
is used to find out the best, worst and most likely case
scenarios  possibility. From the projection of
distribution, the likelihood of best, worst and most
likely results of LSF, SR and AM is observed. This
case study is aimed to find the effect of variation in
major oxides on the LSF, AM and SR or Raw mix
design. For the Monte Carlo simulation, the data given
in Tables 3.1, 3.2 and 3.3 were used. Monte Carlo
simulation uses random numbers to generate random
data.

Results and Discussion
The percent content of oxides obtained from chemical

analysis of the limestone dust samples is used to
estimate the descriptive statistics and evaluate the best
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fit probability distributions. Probability and frequency
distribution is a reliable approach to explain the trend
of the data. The statistics of the major oxides are
provided in Table 1, and the probability distributions
plots are presented in Fig. 2.

Table 1. Summary of major oxides and MgO descriptive statistics.

Statistics | SiO, | Al,O3 Fe,03 CaO MgO K,0
Sample size| 30 30 30 30 30 30
SD 477 | 132 | 0646 | 3746 | 151 | 0144
Average |7.350 | 162 | 0851 | 49.086 | 1123 | 0.211
Skewness | 15 | 1.59 1.40 1135 | 549 | 0910
Kurtosis | 228 | 25 0.86 122 | 3091 | 029
Mode | 9.09 | 1.76 0.30 917 | 079 | 002
Median | 6.31 | 1.19 0.62 629 | 0791 | 0.161
Mean | 7.34 | 151 0.85 729 | 118 | 0220
Corl‘g\?eelnce 95% | 95% | 95% 95% | 95% | 95%

Based on the goodness of fit test, distributions
followed by major oxides are SiO, (largest extreme
value), CaO (smallest extreme value), Fe;O3
(lognormal), Al,O; (Weibull), KO (Weibull) and
MgO (Weibull) (Fig. 4).
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Fig. 2 Probability distributions
limestone dust.

of major oxides and MgO of

Monte Carlo simulation is used to model sample data
using indices formulas given in Equations 1, 2, and 3
to address the possible best, worst and most likely case
scenarios for raw mix design. Indices parameters
(major oxides) are used to achieve the statistical
models of indices. The existing data are simulated up
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to 500 alterations using Monte Carlo simulation. The
results from the simulation were used to find out the
possible scenarios and possible indices that require raw
material blending to fulfill the quality requirements.

From the scenario analysis, it is revealed that about
35.4% of scenarios are best-case scenarios and 41.6%
are worst case, while 23 % are most likely case
scenarios. The results of the predictive values of

indices in percentage are given in Table 2.

Table 2. Percentage and probability of predictive values in the range.

Indices Values in Range Probability
LSF 82% 0.82
AM 58.4% 0.584
SR 52.1% 0.521
C.S 89.5% 0.895
CsS 83% 0.83

C,AF 95.8% 0.958
MgO 60.4% 0.604
C:A 60.4% 0.604
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Fig. 3 Frequency distribution of major oxides and MgO of shale.

It is predicted that limestone dust used for cement
manufacturing in this case study is of average quality
using scenario analysis. It is suggested to fulfill the
CaO for quality requirement using high-quality
limestone with limestone dust as a raw material.
Laterite with low MgO content < 10% should be
provided to maintain MgO content up to an acceptable
level. Similarly, to keep silica at a smooth level, shale
with high silica content should be provided. Hence
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preceding to raw mix design using Monte Carlo
simulation for scenario analysis, can help in the
decision about production planning.
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Fig. 4 Histogram of the observed distribution of major oxides and
MgO of laterite.

In this study short-term production planning is done
based on the optimized raw mix which is designed to
find the optimum short-range production plan for this
case study. The optimum production plan should
ensure the stockpile capacity of 26000 tons. The cost
of limestone dust and additives acquired from the
market is given in Table 3.

Table 3. Purchased cost and required quantity limits of the raw
material.

. Purchased Cost Required quantity (tons)
Raw material ($/ton) Minimum Maximum
Limestone D 1 0.8 0 20,000
Limestone D 2 0.85 0 20,000
Limestone D 3 0.9 0 20,000
Shale PC 0.66 300 6000
Laterite-| 2.42 10 1500

The variation in the purchasing cost of limestone dust
is due to variation in transportation cost because the
raw material is transported from various locations.
Manual planning involves a trial and error approach
which is impractical in this case study and also may be
time-consuming. Linear programming (LP) model
indices are used to achieve optimum blending. Excel
solver was used to developing an LP model. Linear
programming-based optimization ensures the required
quality and quantity of raw material for blending at
minimum cost. Therefore, two optimized scenarios are
presented out of 500 scenarios to evaluate the
applicability of the proposed approach. The purchasing

44

cost of raw material for scenario-1 is 19285 dollars and

for scenario-I1 is 19265 dollars given in Table 4.

Table 4. Raw material and their optimum cost for scenario-1 and I1.

. Raw material (tons)
Raw material Sample - -
Scenario-| Scenario-1|
Limestone D 1 N9 19,150 18,961
Limestone D 2 NE 09 0 0
Limestone D 3 NE 9 0 0
Shale PC SPC 5,670 5,855
Laterite-1 935 170 174
overall cost ($ 19285 19265
Scenario analysis revealed that scenario-lI and

scenario-Il provide 19150 tons and 18961 tons of raw
material to fulfill the stockpile requirement. The
optimum values of the indices of both scenarios are
given in Table 5. Therefore, the optimum planning
ensures the maximum use of limestone dust to avoid
the maximum additives purchased from the market.

Table 5. Quality parameters of raw material blending in scenario-I
and II.

Lower Upper Optimized | Optimized

Quality Parameters limit Ii?r?it values for | values for

Scenario-1 | Scenario-1l
Silica ratio (SR) 25 29 2.66 2.6
Alumina modulus (AM) 15 1.8 1.80 1.80
Celite (C3A) 6 8 6.22 6.37
Alite (CsS) 30 35 30.75 32.7
Belite (C2S) 15 20 20.00 20.00
Brownmillerite (C4AF) 4 9.6 6.15 6.29

Lime saturation factor

(LSF) 0.86 0.97 0.89 0.86
Magnesium oxide (MgO) 1% 2% 1.15 1.17
Req”"e‘ztg";’) material | »5.000 | 30,000 25,000 25,000

The cement industry in Pakistan usually used 73%
limestone, 23% clay and 2% laterite to manufacture the
final product of cement. In the case of FECTO cement
85% limestone dust, 9% shale and 6% laterite are used
to meet the kiln need. By using the proposed approach
for FECTO cement the results revealed that 77%
limestone dust, 22% shale and 1% laterite for scenario-
I, while for scenario-Il, 76% limestone dust 23% shale
and 1% laterite provides optimum raw material
blending. The results also revealed that according to
the chemical composition of raw material and
additives, at an optimum cost the quantity of limestone
varies from 76% to 90%, shale from 8% to 13% and
laterite from 0.055% to 1.25% respectively.

The difficulty in modeling the available raw material is
the wvariation in chemical composition, where the
limestone dust pile is an essential factor influencing
the distribution. The design of the resource model
without this relation may be unrealistic. In some places
the laterite composition is extremely high that is
unacceptable, while in some scenarios the CaO grade
is lower that is unreasonable. Therefore, due to these
variations, most of the scenarios deviate from the
required quality. The quality deviation also provides a
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better picture to understand the ground reality before
quarry planning. In this study, a Monte Carlo
simulation-based scenario analysis has been proposed
to overcome the challenge related to uncertainty based
on the chemical composition of raw material. The
MCS reproduces the chemical composition based on
their real-time chemical composition probability
distribution. Despite this, there is some criticism on
MCS, such as abominable contact relation among rock
type and deficiency of image or simulation-based
results.

Conclusion

Adequate production planning from the quarry and raw
material purchased from the market has a key role in
optimizing the raw material blending. The results of
Monte Carlo simulation and scenario analysis
presented in this paper induct standards that could
assist FECTO cement managers in ascertaining the
appropriate strategy for production planning. It is
evident from the Monte Carlo simulation that 500
scenarios are addressed for raw mix design using
scenario analysis. The results revealed that 35.4% of
scenarios exhibit the optimum values for indices
fulfilling the quality and quantity requirements. Monte
Carlo simulation not only randomly sample data but
also cope with the uncertanity related to raw material
chemical composition. Therefore, this approach
ensures not only optimum raw material blending but
also provides detailed background by prediction to
choose ideal blocks for raw material extraction. The
results revealed that these models and techniques help
in better decision-making related to production
planning of cement quarry operations.
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